Search results
Results from the WOW.Com Content Network
Applying the more detailed form of those calculations to the Ivy Mike device yields vaporized pusher gas expansion velocity of 290 kilometres per second (29 cm/μs) and an implosion velocity of perhaps 400 km/s (40 cm/μs) if + 3 ⁄ 4 of the total tamper/pusher mass is ablated off, the most energy efficient proportion.
The force on a particle crossing this gap is given by the Lorentz force law: = [+ ()] where q is the charge on the particle, E is the electric field, v is the particle velocity, and B is the magnetic flux density. It is not possible to accelerate particles using only a static magnetic field, as the magnetic force always acts perpendicularly to ...
Velocity differences between the bottom and tops of particles can lead to lift. Water is allowed to flow above the particle but not below resulting in a zero and non-zero velocity at the bottom and top of the particle respectively. The difference in velocities results in a pressure gradient that imparts a lifting force on the particle. If this ...
Particle velocity (denoted v or SVL) is the velocity of a particle (real or imagined) in a medium as it transmits a wave. The SI unit of particle velocity is the metre per second (m/s). In many cases this is a longitudinal wave of pressure as with sound , but it can also be a transverse wave as with the vibration of a taut string.
Thus, indirectly, thermal velocity is a measure of temperature. Technically speaking, it is a measure of the width of the peak in the Maxwell–Boltzmann particle velocity distribution. Note that in the strictest sense thermal velocity is not a velocity, since velocity usually describes a vector rather than simply a scalar speed.
In a "totally-closed" system (i.e., isolated system) the total energy, the total momentum, and hence the total invariant mass are conserved. Einstein's formula for change in mass translates to its simplest Δ E = Δ mc 2 form, however, only in non-closed systems in which energy is allowed to escape (for example, as heat and light), and thus ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In a sound wave, the complementary variable to sound pressure is the particle velocity. Together, they determine the sound intensity of the wave. Sound intensity, denoted I and measured in W·m −2 in SI units, is defined by =, where p is the sound pressure, v is the particle velocity.