Search results
Results from the WOW.Com Content Network
The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [1] [2]In particular, the discrete-time Lyapunov equation (also known as Stein equation) for is
The stability radius of a continuous function f (in a functional space F) with respect to an open stability domain D is the distance between f and the set of unstable functions (with respect to D). We say that a function is stable with respect to D if its spectrum is in D. Here, the notion of spectrum is defined on a case-by-case basis, as ...
In systems engineering, the overall system transfer matrix G (s) is decomposed into two parts: H (s) representing the system being controlled, and C(s) representing the control system. C (s) takes as its inputs the inputs of G (s) and the outputs of H (s). The outputs of C (s) form the inputs for H (s). [3]
ISS unified the Lyapunov and input-output stability theories and revolutionized our view on stabilization of nonlinear systems, design of robust nonlinear observers, stability of nonlinear interconnected control systems, nonlinear detectability theory, and supervisory adaptive control. This made ISS the dominating stability paradigm in ...
Stability generally increases to the left of the diagram. [1] Some sink, source or node are equilibrium points. In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions.
[1] [2] The Bistritz test is the discrete equivalent of Routh criterion used to test stability of continuous LTI systems. This title was introduced soon after its presentation. [3] It has been also recognized to be more efficient than previously available stability tests for discrete systems like the Schur–Cohn and the Jury test. [4]
Stable polynomials arise in control theory and in mathematical theory of differential and difference equations. A linear, time-invariant system (see LTI system theory) is said to be BIBO stable if every bounded input produces bounded output. A linear system is BIBO stable if its characteristic polynomial is stable.
An exponentially stable LTI system is one that will not "blow up" (i.e., give an unbounded output) when given a finite input or non-zero initial condition. Moreover, if the system is given a fixed, finite input (i.e., a step ), then any resulting oscillations in the output will decay at an exponential rate , and the output will tend ...