Search results
Results from the WOW.Com Content Network
Once you have the wattage, simply divide that by 1,000 (to convert the watts to kilowatts) and then multiply by how many hours a day you use the item. That will give you a basic figure for how ...
kilo-(kW) 1–3 × 10 3 W tech: heat output of a domestic electric kettle: 1.1 × 10 3 W tech: power of a microwave oven: 1.366 × 10 3 W astro: power per square meter received from the Sun at the Earth's orbit: 1.5 × 10 3 W tech: legal limit of power output of an amateur radio station in the United States up to 2 × 10 3 W
The notation kW/h for the kilowatt-hour is incorrect, as it denotes kilowatt per hour. The hour is a unit of time listed among the non-SI units accepted by the International Bureau of Weights and Measures for use with the SI. [6] An electric heater consuming 1,000 watts (1 kilowatt) operating for one hour uses one kilowatt-hour of energy.
Power is the rate at which energy is generated or consumed and hence is measured in units (e.g. watts) that represent energy per unit time. For example, when a light bulb with a power rating of 100 W is turned on for one hour, the energy used is 100 watt hours (W·h), 0.1 kilowatt hour, or 360 kJ. This same amount of energy would light a 40 ...
A unit of electrical energy, particularly for utility bills, is the kilowatt-hour (kWh); [3] one kilowatt-hour is equivalent to 3.6 megajoules. Electricity usage is often given in units of kilowatt-hours per year or other periods. [4] This is a measurement of average power consumption, meaning the average rate at which energy is transferred ...
Engine power is the power that an engine can put out. It can be expressed in power units, most commonly kilowatt, pferdestärke (metric horsepower), or horsepower.In terms of internal combustion engines, the engine power usually describes the rated power, which is a power output that the engine can maintain over a long period of time according to a certain testing method, for example ISO 1585.
1 kWh = 3,600 kWs = 1,000 Wh = 3.6 million W·s = 3.6 million J Electric and electronic devices consume electric energy to generate desired output (light, heat, motion, etc.). During operation, some part of the energy is lost depending on the electrical efficiency .
$1 of electricity at a cost of $0.10/kWh (the US average retail cost in 2009) [121] [122] [123] 4×10 7 J Energy from the combustion of 1 cubic meter of natural gas [124] 4.2×10 7 J Caloric energy consumed by Olympian Michael Phelps on a daily basis during Olympic training [125] 6.3×10 7 J