enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Convergence of random variables - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_random...

    Loosely, with this mode of convergence, we increasingly expect to see the next outcome in a sequence of random experiments becoming better and better modeled by a given probability distribution. More precisely, the distribution of the associated random variable in the sequence becomes arbitrarily close to a specified fixed distribution.

  3. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    The sequence of partial sums obtained by grouping is a subsequence of the partial sums of the original series. The convergence of each absolutely convergent series is an equivalent condition for a normed vector space to be Banach (i.e.: complete).

  4. Convergence proof techniques - Wikipedia

    en.wikipedia.org/wiki/Convergence_proof_techniques

    There are many types of sequences and modes of convergence, and different proof techniques may be more appropriate than others for proving each type of convergence of each type of sequence. Below are some of the more common and typical examples. This article is intended as an introduction aimed to help practitioners explore appropriate techniques.

  5. Abelian and Tauberian theorems - Wikipedia

    en.wikipedia.org/wiki/Abelian_and_tauberian_theorems

    The original examples are Abel's theorem showing that if a series converges to some limit then its Abel sum is the same limit, and Tauber's theorem showing that if the Abel sum of a series exists and the coefficients are sufficiently small (o(1/n)) then the series converges to the Abel sum. More general Abelian and Tauberian theorems give ...

  6. Limit of a sequence - Wikipedia

    en.wikipedia.org/wiki/Limit_of_a_sequence

    In mathematics, the limit of a sequence is the value that the terms of a sequence "tend to", and is often denoted using the symbol (e.g., ). [1] If such a limit exists and is finite, the sequence is called convergent. [2]

  7. Cauchy's convergence test - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_convergence_test

    For any real sequence , the above results on convergence imply that the infinite series ∑ k = 1 ∞ a k {\displaystyle \sum _{k=1}^{\infty }a_{k}} converges if and only if for every ε > 0 {\displaystyle \varepsilon >0} there is a number N , such that m ≥ n ≥ N imply

  8. Weierstrass M-test - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_M-test

    In mathematics, the Weierstrass M-test is a test for determining whether an infinite series of functions converges uniformly and absolutely.It applies to series whose terms are bounded functions with real or complex values, and is analogous to the comparison test for determining the convergence of series of real or complex numbers.

  9. Rate of convergence - Wikipedia

    en.wikipedia.org/wiki/Rate_of_convergence

    In asymptotic analysis in general, one sequence () that converges to a limit is said to asymptotically converge to with a faster order of convergence than another sequence () that converges to in a shared metric space with distance metric | |, such as the real numbers or complex numbers with the ordinary absolute difference metrics, if