enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Diffraction - Wikipedia

    en.wikipedia.org/wiki/Diffraction

    Diffraction from a large three-dimensional periodic structure such as many thousands of atoms in a crystal is called Bragg diffraction. It is similar to what occurs when waves are scattered from a diffraction grating. Bragg diffraction is a consequence of interference between waves reflecting from many different crystal planes.

  3. Diffraction from slits - Wikipedia

    en.wikipedia.org/wiki/Diffraction_from_slits

    Because diffraction is the result of addition of all waves (of given wavelength) along all unobstructed paths, the usual procedure is to consider the contribution of an infinitesimally small neighborhood around a certain path (this contribution is usually called a wavelet) and then integrate over all paths (= add all wavelets) from the source to the detector (or given point on a screen).

  4. Category:Diffraction - Wikipedia

    en.wikipedia.org/wiki/Category:Diffraction

    Diffraction refers to various phenomena associated with wave propagation, such as the bending, spreading and interference of waves emerging from an aperture. Subcategories This category has the following 3 subcategories, out of 3 total.

  5. Fresnel diffraction - Wikipedia

    en.wikipedia.org/wiki/Fresnel_diffraction

    Some of the earliest work on what would become known as Fresnel diffraction was carried out by Francesco Maria Grimaldi in Italy in the 17th century. In his monograph entitled "Light", [3] Richard C. MacLaurin explains Fresnel diffraction by asking what happens when light propagates, and how that process is affected when a barrier with a slit or hole in it is interposed in the beam produced by ...

  6. Electron diffraction - Wikipedia

    en.wikipedia.org/wiki/Electron_diffraction

    Close to an aperture or atoms, often called the "sample", the electron wave would be described in terms of near field or Fresnel diffraction. [12]: Chpt 7-8 This has relevance for imaging within electron microscopes, [1]: Chpt 3 [2]: Chpt 3-4 whereas electron diffraction patterns are measured far from the sample, which is described as far-field or Fraunhofer diffraction. [12]:

  7. Diffraction in time - Wikipedia

    en.wikipedia.org/wiki/Diffraction_in_time

    In quantum physics, diffraction in time is a phenomenon associated with the quantum dynamics of suddenly released matter waves initially confined in a region of space. It was introduced in 1952 by Ukrainian-Mexican physicist Marcos Moshinsky with the shutter problem . [ 1 ]

  8. Dynamical theory of diffraction - Wikipedia

    en.wikipedia.org/.../Dynamical_theory_of_diffraction

    The dynamical theory of diffraction describes the interaction of waves with a regular lattice. The wave fields traditionally described are X-rays , neutrons or electrons and the regular lattice are atomic crystal structures or nanometer -scale multi-layers or self-arranged systems.

  9. Laser diffraction analysis - Wikipedia

    en.wikipedia.org/wiki/Laser_diffraction_analysis

    Laser diffraction analysis, also known as laser diffraction spectroscopy, is a technology that utilizes diffraction patterns of a laser beam passed through any object ranging from nanometers to millimeters in size [1] to quickly measure geometrical dimensions of a particle.