enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Direct simulation Monte Carlo - Wikipedia

    en.wikipedia.org/wiki/Direct_simulation_Monte_Carlo

    The DSMC method has been extended to model continuum flows (Kn < 1) and the results can be compared with Navier Stokes solutions. The DSMC method models fluid flows using probabilistic simulation molecules to solve the Boltzmann equation. Molecules are moved through a simulation of physical space in a realistic manner that is directly coupled ...

  3. Boussinesq approximation (water waves) - Wikipedia

    en.wikipedia.org/wiki/Boussinesq_approximation...

    The Boussinesq approximation for water waves takes into account the vertical structure of the horizontal and vertical flow velocity. This results in non-linear partial differential equations , called Boussinesq-type equations , which incorporate frequency dispersion (as opposite to the shallow water equations , which are not frequency-dispersive).

  4. Sheet flow - Wikipedia

    en.wikipedia.org/wiki/Sheet_flow

    The concentration of particles usually spreads out in a straight line, and the Rouse distribution works in the water column above the sheet-flow layer where the particles are less concentrated. However, velocity distribution formulas are still being refined to accurately describe particle velocity profiles in steady or oscillatory sheet flows. [2]

  5. Flow (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Flow_(mathematics)

    Informally, a flow may be viewed as a continuous motion of points over time. More formally, a flow is a group action of the real numbers on a set. The idea of a vector flow, that is, the flow determined by a vector field, occurs in the areas of differential topology, Riemannian geometry and Lie groups.

  6. Flow velocity - Wikipedia

    en.wikipedia.org/wiki/Flow_velocity

    In many engineering applications the local flow velocity vector field is not known in every point and the only accessible velocity is the bulk velocity or average flow velocity ¯ (with the usual dimension of length per time), defined as the quotient between the volume flow rate ˙ (with dimension of cubed length per time) and the cross sectional area (with dimension of square length):

  7. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  8. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .

  9. Slip ratio (gas–liquid flow) - Wikipedia

    en.wikipedia.org/wiki/Slip_ratio_(gas–liquid_flow)

    In the homogeneous model of two-phase flow, the slip ratio is by definition assumed to be unity (no slip). It is however experimentally observed that the velocity of the gas and liquid phases can be significantly different, depending on the flow pattern (e.g. plug flow , annular flow, bubble flow, stratified flow, slug flow, churn flow).