enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...

  3. Fourier sine and cosine series - Wikipedia

    en.wikipedia.org/wiki/Fourier_sine_and_cosine_series

    An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.

  4. Carleson's theorem - Wikipedia

    en.wikipedia.org/wiki/Carleson's_theorem

    A fundamental question about Fourier series, asked by Fourier himself at the beginning of the 19th century, is whether the Fourier series of a continuous function converges pointwise to the function. By strengthening the continuity assumption slightly one can easily show that the Fourier series converges everywhere.

  5. List of harmonic analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_harmonic_analysis...

    See also list of Fourier analysis topics and list of Fourier-related transforms, which are more directed towards the classical Fourier series and Fourier transform of mathematical analysis, mathematical physics and engineering.

  6. Generalized Fourier series - Wikipedia

    en.wikipedia.org/wiki/Generalized_Fourier_series

    A generalized Fourier series is the expansion of a square integrable function into a sum of square integrable orthogonal basis functions. The standard Fourier series uses an orthonormal basis of trigonometric functions , and the series expansion is applied to periodic functions.

  7. Dini test - Wikipedia

    en.wikipedia.org/wiki/Dini_test

    Then the Fourier series of f converges at t to f(t). For example, the theorem holds with ω f = log −2 ( ⁠ 1 / δ ⁠ ) but does not hold with log −1 ( ⁠ 1 / δ ⁠ ) . Theorem (the Dini–Lipschitz test): Assume a function f satisfies

  8. Discrete Fourier series - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_series

    A Fourier series, by nature, has a discrete set of components with a discrete set of coefficients, also a discrete sequence. So a DFS is a representation of one sequence in terms of another sequence. Well known examples are the Discrete Fourier transform and its inverse transform. [1]: ch 8.1

  9. Fejér's theorem - Wikipedia

    en.wikipedia.org/wiki/Fejér's_theorem

    Existence or divergence to infinity of the Cesàro mean is also implied. By a theorem of Marcel Riesz, Fejér's theorem holds precisely as stated if the (C, 1) mean σ n is replaced with (C, α) mean of the Fourier series (Zygmund 1968, Theorem III.5.1).