Search results
Results from the WOW.Com Content Network
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
Error-correcting codes are used in lower-layer communication such as cellular network, high-speed fiber-optic communication and Wi-Fi, [11] [12] as well as for reliable storage in media such as flash memory, hard disk and RAM. [13] Error-correcting codes are usually distinguished between convolutional codes and block codes:
Performance improvement will be a function of AX.25 packet size combined with the noise characteristics of the transmission channel. Initial performance testing involved transmission of 61 FX.25 frames over an interval of about 15 minutes.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The simplest transmitter-based technique is retransmission, sending the message multiple times. Although this idea is simple, because of the extra time required to send multiple signals, this technique is incapable of supporting real-time applications.
Automatic repeat request (ARQ), also known as automatic repeat query, is an error-control method for data transmission that uses acknowledgements (messages sent by the receiver indicating that it has correctly received a message) and timeouts (specified periods of time allowed to elapse before an acknowledgment is to be received) to achieve ...
The first public paper on turbo codes was "Near Shannon Limit Error-correcting Coding and Decoding: Turbo-codes". [4] This paper was published 1993 in the Proceedings of IEEE International Communications Conference. The 1993 paper was formed from three separate submissions that were combined due to space constraints.
In describing the redundancy of raw data, the rate of a source of information is the average entropy per symbol. For memoryless sources, this is merely the entropy of each symbol, while, in the most general case of a stochastic process, it is