enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree pruning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_pruning

    Pruning is a data compression technique in machine learning and search algorithms that reduces the size of decision trees by removing sections of the tree that are non-critical and redundant to classify instances. Pruning reduces the complexity of the final classifier, and hence improves predictive accuracy by the reduction of overfitting.

  3. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  4. Repeated incremental pruning to produce error reduction ...

    en.wikipedia.org/wiki/Repeated_Incremental...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  6. Incremental decision tree - Wikipedia

    en.wikipedia.org/wiki/Incremental_decision_tree

    Incremental decision tree methods allow an existing tree to be updated using only new individual data instances, without having to re-process past instances. This may be useful in situations where the entire dataset is not available when the tree is updated (i.e. the data was not stored), the original data set is too large to process or the ...

  7. Apriori algorithm - Wikipedia

    en.wikipedia.org/wiki/Apriori_algorithm

    Apriori [1] is an algorithm for frequent item set mining and association rule learning over relational databases.It proceeds by identifying the frequent individual items in the database and extending them to larger and larger item sets as long as those item sets appear sufficiently often in the database.

  8. My Top 10 Portfolio Holdings for 2025

    www.aol.com/top-10-portfolio-holdings-2025...

    Whereas Teva thrived in 2024, precious-metal miner SSR Mining (NASDAQ: SSRM) had a disappointing year that was highlighted by the tragic heap leach pad collapse at the Copler mine in Turkey. SSR ...

  9. Bootstrap aggregating - Wikipedia

    en.wikipedia.org/wiki/Bootstrap_aggregating

    As most tree based algorithms use linear splits, using an ensemble of a set of trees works better than using a single tree on data that has nonlinear properties (i.e. most real world distributions). Working well with non-linear data is a huge advantage because other data mining techniques such as single decision trees do not handle this as well.