Search results
Results from the WOW.Com Content Network
Histone-modifying enzymes that induce a modification (e.g., add a functional group) are dubbed writers, while enzymes that revert modifications are dubbed erasers. Furthermore, there are many uncommon histone modifications including O-GlcNAcylation, [9] sumoylation, [10] ADP-ribosylation, [11] citrullination [12] [13] [14] and proline ...
Cumulative evidence suggests that such code is written by specific enzymes which can (for example) methylate or acetylate DNA ('writers'), removed by other enzymes having demethylase or deacetylase activity ('erasers'), and finally readily identified by proteins ('readers') that are recruited to such histone modifications and bind via specific ...
The restriction modification system (RM system) is found in bacteria and archaea, and provides a defense against foreign DNA, such as that borne by bacteriophages.. Bacteria have restriction enzymes, also called restriction endonucleases, which cleave double-stranded DNA at specific points into fragments, which are then degraded further by other endonucleases.
DNA adenine methylase, (Dam) [1] (also site-specific DNA-methyltransferase (adenine-specific), EC 2.1.1.72, modification methylase, restriction-modification system) is an enzyme that adds a methyl group to the adenine of the sequence 5'-GATC-3' in newly synthesized DNA.
In molecular biology, post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes , which translate mRNA into polypeptide chains , which may then change to form the mature protein product.
Lignin-modifying enzymes benefit industry as they can break down lignin; a common waste product of the paper and pulp industry. These enzymes have been used in the refinement of poplar as lignin inhibits the enzymatic hydrolysis of treated poplar and Lignin-modifying enzymes can efficiently degrade the lignin thus fixing this problem. [4]
Different restriction enzymes acting on different recognition sites produce different DNA fragments. The term restriction enzyme originated from the studies of phage λ, a virus that infects bacteria, and the phenomenon of host-controlled restriction and modification of such bacterial phage or bacteriophage. [12]
In replication, M6A modifications mark DNA regions where the initiation stage takes place as well as regulates precise timing via the Dam methyltransferase in E. coli. [81] [82] Another enzyme, Dam DNA methylase regulates mismatch repair using M6A modifications which influence other repair proteins by recognizing specific mismatches. [83]