Search results
Results from the WOW.Com Content Network
The tangential speed of Earth's rotation at a point on Earth can be approximated by multiplying the speed at the equator by the cosine of the latitude. [42] For example, the Kennedy Space Center is located at latitude 28.59° N, which yields a speed of: cos(28.59°) × 1,674.4 km/h = 1,470.2 km/h.
[nb 1] Earth's orbital speed averages 29.78 km/s (19 mi/s; 107,208 km/h; 66,616 mph), which is fast enough to cover the planet's diameter in 7 minutes and the distance to the Moon in 4 hours. [3] The point towards which the Earth in its solar orbit is directed at any given instant is known as the "apex of the Earth's way". [4] [5]
Earth's rotation period relative to the fixed stars, called its stellar day by the International Earth Rotation and Reference Systems Service (IERS), is 86,164.0989 seconds of mean solar time , or 23 h 56 m 4.0989 s. [2] [n 10] Earth's rotation period relative to the precessing or moving mean March equinox (when the Sun is at 90° on the ...
For example, as the Earth's rotational velocity is 465 m/s at the equator, a rocket launched tangentially from the Earth's equator to the east requires an initial velocity of about 10.735 km/s relative to the moving surface at the point of launch to escape whereas a rocket launched tangentially from the Earth's equator to the west requires an ...
the Earth's surface Speed Orbital period Specific orbital energy; Earth's own rotation at surface (for comparison— not an orbit) 6,378 km: 0 km: 465.1 m/s (1,674 km/h or 1,040 mph) 23 h 56 min 4.09 sec: −62.6 MJ/kg: Orbiting at Earth's surface (equator) theoretical 6,378 km: 0 km: 7.9 km/s (28,440 km/h or 17,672 mph) 1 h 24 min 18 sec
Melting ice is slowing Earth's spin and causing changes to its axis, new studies find. The shifts are causing feedback beneath the surface, impacting the planet's molten core.
Earth's rotational velocity is not constant over time. Any motion of mass in or on Earth causes a slowdown or speedup of the rotation speed, or a change of rotation axis. Small motions produce changes too small to be measured, but movements of very large mass, like sea currents, tides, or those resulting from earthquakes, can produce ...
Geocentric circular orbit with an altitude of 35,786 km (22,236 mi). The period of the orbit equals one sidereal day, coinciding with the rotation period of the Earth. The speed is approximately 3 km/s (9,800 ft/s). High Earth orbit (HEO) Geocentric orbits with altitudes at apogee higher than that of the geosynchronous orbit.