enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Monte Carlo methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    The first application to option pricing was by Phelim Boyle in 1977 (for European options). In 1996, M. Broadie and P. Glasserman showed how to price Asian options by Monte Carlo. An important development was the introduction in 1996 by Carriere of Monte Carlo methods for options with early exercise features.

  3. Black model - Wikipedia

    en.wikipedia.org/wiki/Black_model

    The Black model (sometimes known as the Black-76 model) is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.

  4. Black–Scholes model - Wikipedia

    en.wikipedia.org/wiki/Black–Scholes_model

    [12] [13] [14] Robert C. Merton was the first to publish a paper expanding the mathematical understanding of the options pricing model, and coined the term "Black–Scholes options pricing model". The formula led to a boom in options trading and provided mathematical legitimacy to the activities of the Chicago Board Options Exchange and other ...

  5. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations. The discrete difference equations may then be solved iteratively to calculate a price for the option. [4]

  6. Monte Carlo methods in finance - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_in_finance

    Note that whereas equity options are more commonly valued using other pricing models such as lattice based models, for path dependent exotic derivatives – such as Asian options – simulation is the valuation method most commonly employed; see Monte Carlo methods for option pricing for discussion as to further – and more complex – option ...

  7. Trinomial tree - Wikipedia

    en.wikipedia.org/wiki/Trinomial_Tree

    The trinomial tree is a lattice-based computational model used in financial mathematics to price options. It was developed by Phelim Boyle in 1986. It is an extension of the binomial options pricing model, and is conceptually similar. It can also be shown that the approach is equivalent to the explicit finite difference method for option ...

  8. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" ( lattice based ) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

  9. Futures contract - Wikipedia

    en.wikipedia.org/wiki/Futures_contract

    For both, the option strike price is the specified futures price at which the futures is traded if the option is exercised. Futures are often used since they are delta one instruments. Calls and options on futures may be priced similarly to those on traded assets by using an extension of the Black-Scholes formula , namely the Black model .