Search results
Results from the WOW.Com Content Network
In number theory, a narcissistic number [1] [2] (also known as a pluperfect digital invariant (PPDI), [3] an Armstrong number [4] (after Michael F. Armstrong) [5] or a plus perfect number) [6] in a given number base is a number that is the sum of its own digits each raised to the power of the number of digits.
In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are potentially limited only by the available memory of the host system.
GNU Multiple Precision Arithmetic Library (GMP) is a free library for arbitrary-precision arithmetic, operating on signed integers, rational numbers, and floating-point numbers. [3] There are no practical limits to the precision except the ones implied by the available memory (operands may be of up to 2 32 −1 bits on 32-bit machines and 2 37 ...
Nuitka (pronounced as / n juː t k ʌ / [2]) is a source-to-source compiler which compiles Python code to C source code, applying some compile-time optimizations in the process such as constant folding and propagation, built-in call prediction, type inference, and conditional statement execution.
For example: automobile car This template should not be used to tag redirects that are taxonomic synonyms . For taxonomic synonyms use {{ R from alternative scientific name }} instead .
A Nivenmorphic number or harshadmorphic number for a given number base is an integer t such that there exists some harshad number N whose digit sum is t, and t, written in that base, terminates N written in the same base. For example, 18 is a Nivenmorphic number for base 10: 16218 is a harshad number 16218 has 18 as digit sum 18 terminates 16218
Get answers to your AOL Mail, login, Desktop Gold, AOL app, password and subscription questions. Find the support options to contact customer care by email, chat, or phone number.
A prime sieve or prime number sieve is a fast type of algorithm for finding primes. There are many prime sieves. The simple sieve of Eratosthenes (250s BCE), the sieve of Sundaram (1934), the still faster but more complicated sieve of Atkin [1] (2003), sieve of Pritchard (1979), and various wheel sieves [2] are most common.