Search results
Results from the WOW.Com Content Network
It is defined by dividing the CGS unit of mass, the gram, by the CGS unit of volume, the cubic centimetre. The official SI symbols are g/cm 3, g·cm −3, or g cm −3. It is equivalent to the units gram per millilitre (g/mL) and kilogram per litre (kg/L).
Some SI units of volume to scale and approximate corresponding mass of water. A cubic centimetre (or cubic centimeter in US English) (SI unit symbol: cm 3; non-SI abbreviations: cc and ccm) is a commonly used unit of volume that corresponds to the volume of a cube that measures 1 cm × 1 cm × 1 cm.
See Weight for detail of mass/weight distinction and conversion. Avoirdupois is a system of mass based on a pound of 16 ounces, while Troy weight is the system of mass where 12 troy ounces equals one troy pound. The symbol g 0 is used to denote standard gravity in order to avoid confusion with the (upright) g symbol for gram.
Thus 100 mL of water is equal to approximately 100 g. Therefore, a solution with 1 g of solute dissolved in final volume of 100 mL aqueous solution may also be considered 1% m/m (1 g solute in 99 g water). This approximation breaks down as the solute concentration is increased (for example, in water–NaCl mixtures). High solute concentrations ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
British imperial measures distinguish between weight and volume. Weight is measured in ounces and pounds (avoirdupois) as in the U.S. Volume is measured in imperial gallons, quarts, pints, fluid ounces, fluid drachms, and minims. The imperial gallon was originally defined as 10 pounds (4.5359 kg) of water in 1824, and refined as exactly 4.54609 ...
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000
In the following table, material data are given with a pressure of 611.7 Pa (equivalent to 0.006117 bar). Up to a temperature of 0.01 °C, the triple point of water, water normally exists as ice, except for supercooled water, for which one data point is tabulated here. At the triple point, ice can exist together with both liquid water and vapor.