enow.com Web Search

  1. Ad

    related to: pythagorean triangle examples math in real life

Search results

  1. Results from the WOW.Com Content Network
  2. Pythagorean triple - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_triple

    A triangle whose side lengths are a Pythagorean triple is a right triangle and called a Pythagorean triangle. A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not.

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).

  4. Spiral of Theodorus - Wikipedia

    en.wikipedia.org/wiki/Spiral_of_Theodorus

    The spiral is started with an isosceles right triangle, with each leg having unit length.Another right triangle (which is the only automedian right triangle) is formed, with one leg being the hypotenuse of the prior right triangle (with length the square root of 2) and the other leg having length of 1; the length of the hypotenuse of this second right triangle is the square root of 3.

  5. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Many results about plane figures are proved, for example, "In any triangle, two angles taken together in any manner are less than two right angles." (Book I proposition 17) and the Pythagorean theorem "In right-angled triangles the square on the side subtending the right angle is equal to the squares on the sides containing the right angle ...

  6. Pythagorean Triangles - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_Triangles

    Chapter 4 considers special classes of Pythagorean triangles, including those with sides in arithmetic progression, nearly-isosceles triangles, and the relation between nearly-isosceles triangles and square triangular numbers. The next two chapters characterize the numbers that can appear in Pythagorean triples, and chapters 7–9 find sets of ...

  7. Pythagoreanism - Wikipedia

    en.wikipedia.org/wiki/Pythagoreanism

    This enabled a visual comprehension of mathematics and allowed for a geometrical exploration of numerical relationships. Pythagorean philosophers investigated the relationship of numbers extensively. They defined perfect numbers as those that were equal to the sum of all their divisors. For example: 28 = 1 + 2 + 4 + 7 + 14. [31]

  8. Law (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Law_(mathematics)

    When u and v are real numbers, they can be viewed as vectors in , and the triangle inequality expresses a relationship between absolute values. Pythagorean theorem : It states that the area of the square whose side is the hypotenuse (the side opposite the right angle ) is equal to the sum of the areas of the squares on the other two sides.

  9. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    There is a method to construct all Pythagorean triples that contain a given positive integer x as one of the legs of the right-angled triangle associated with the triple. It means finding all right triangles whose sides have integer measures, with one leg predetermined as a given cathetus. [13] The formulas read as follows.

  1. Ad

    related to: pythagorean triangle examples math in real life