enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh( x / a ) is the catenary , the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.

  3. Hyperbolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_partial...

    This feature qualitatively distinguishes hyperbolic equations from elliptic partial differential equations and parabolic partial differential equations. A perturbation of the initial (or boundary) data of an elliptic or parabolic equation is felt at once by essentially all points in the domain.

  4. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    In mathematics, the method of characteristics is a technique for solving partial differential equations.Typically, it applies to first-order equations, though in general characteristic curves can also be found for hyperbolic and parabolic partial differential equation.

  5. MacCormack method - Wikipedia

    en.wikipedia.org/wiki/MacCormack_method

    In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations. This second-order finite difference method was introduced by Robert W. MacCormack in 1969. [1]

  6. Lax–Friedrichs method - Wikipedia

    en.wikipedia.org/wiki/Lax–Friedrichs_method

    The Lax–Friedrichs method, named after Peter Lax and Kurt O. Friedrichs, is a numerical method for the solution of hyperbolic partial differential equations based on finite differences. The method can be described as the FTCS (forward in time, centered in space) scheme with a numerical dissipation term of 1/2.

  7. Godunov's scheme - Wikipedia

    en.wikipedia.org/wiki/Godunov's_scheme

    In numerical analysis and computational fluid dynamics, Godunov's scheme is a conservative numerical scheme, suggested by Sergei Godunov in 1959, [1] for solving partial differential equations. One can think of this method as a conservative finite volume method which solves exact, or approximate Riemann problems at each inter-cell boundary. In ...

  8. FTCS scheme - Wikipedia

    en.wikipedia.org/wiki/FTCS_scheme

    The function must be discretized spatially with a central difference scheme. This is an explicit method which means that, + can be explicitly computed (no need of solving a system of algebraic equations) if values of at previous time level () are known. FTCS method is computationally inexpensive since the method is explicit.

  9. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Solving for yields = / . Thus, in ... Other hyperbolic functions are defined according to the hyperbolic cosine and hyperbolic sine, so for example ...