enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adder (electronics) - Wikipedia

    en.wikipedia.org/wiki/Adder_(electronics)

    4-bit adder with logical block diagram shown Decimal 4-digit ripple carry adder. FA = full adder, HA = half adder. It is possible to create a logical circuit using multiple full adders to add N-bit numbers. Each full adder inputs a , which is the of the previous adder.

  3. Adder–subtractor - Wikipedia

    en.wikipedia.org/wiki/Adder–subtractor

    A 4-bit ripple-carry adder–subtractor based on a 4-bit adder that performs two's complement on A when D = 1 to yield S = B − A. Having an n-bit adder for A and B, then S = A + B. Then, assume the numbers are in two's complement. Then to perform B − A, two's complement theory says to invert each bit of A with a NOT gate then add one.

  4. Kogge–Stone adder - Wikipedia

    en.wikipedia.org/wiki/Kogge–Stone_adder

    An example of a 4-bit Kogge–Stone adder is shown in the diagram. Each vertical stage produces a "propagate" and a "generate" bit, as shown. The culminating generate bits (the carries) are produced in the last stage (vertically), and these bits are XOR'd with the initial propagate after the input (the red boxes) to produce the sum bits. E.g., the first (least-significant) sum bit is ...

  5. Brent–Kung adder - Wikipedia

    en.wikipedia.org/wiki/Brent–Kung_adder

    A Brent–Kung adder is a parallel adder made in a regular layout with an aim of minimizing the chip area and ease of manufacturing. The addition of n-bit number can be performed in time O ( log 2 ⁡ n ) {\displaystyle O(\log _{2}n)} with a chip size of area O ( n log 2 ⁡ n ) , {\displaystyle O(n\log _{2}n),} thus making it a good-choice ...

  6. Carry-lookahead adder - Wikipedia

    en.wikipedia.org/wiki/Carry-lookahead_adder

    [1] [2] Konrad Zuse is thought to have implemented the first carry-lookahead adder in his 1930s binary mechanical computer, the Zuse Z1. [3] Gerald B. Rosenberger of IBM filed for a patent on a modern binary carry-lookahead adder in 1957. [4] Two widely used implementations of the concept are the Kogge–Stone adder (KSA) and Brent–Kung adder ...

  7. List of 7400-series integrated circuits - Wikipedia

    en.wikipedia.org/wiki/List_of_7400-series...

    4-bit binary full adder (has carry in function) 16 SN74LS283: 74x284 1 4-bit by 4-bit parallel binary multiplier (high order 4 bits of product) 16 SN74284: 74x285 1 4-bit by 4-bit parallel binary multiplier (low order 4 bits of product) 16 SN74285: 74x286 1 9-bit parity generator/checker, bus driver parity I/O port 14 SN74AS286: 74x287 1

  8. Carry-skip adder - Wikipedia

    en.wikipedia.org/wiki/Carry-skip_adder

    Breaking this down into more specific terms, in order to build a 4-bit carry-bypass adder, 6 full adders would be needed. The input buses would be a 4-bit A and a 4-bit B, with a carry-in (CIN) signal. The output would be a 4-bit bus X and a carry-out signal (COUT). The first two full adders would add the first two bits together.

  9. Carry-select adder - Wikipedia

    en.wikipedia.org/wiki/Carry-select_adder

    A conditional sum adder [3] is a recursive structure based on the carry-select adder. In the conditional sum adder, the MUX level chooses between two n/2-bit inputs that are themselves built as conditional-sum adder. The bottom level of the tree consists of pairs of 2-bit adders (1 half adder and 3 full adders) plus 2 single-bit multiplexers.