Search results
Results from the WOW.Com Content Network
Keras is an open-source library that provides a Python interface for artificial neural networks. Keras was first independent software, then integrated into the TensorFlow library , and later supporting more.
TensorFlow serves as a core platform and library for machine learning. TensorFlow's APIs use Keras to allow users to make their own machine-learning models. [33] [43] In addition to building and training their model, TensorFlow can also help load the data to train the model, and deploy it using TensorFlow Serving. [44]
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.
Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding layers that iteratively process the encoder's output and the decoder's output tokens so far.
The use of different model parameters and different corpus sizes can greatly affect the quality of a word2vec model. Accuracy can be improved in a number of ways, including the choice of model architecture (CBOW or Skip-Gram), increasing the training data set, increasing the number of vector dimensions, and increasing the window size of words ...
In control engineering and system identification, a state-space representation is a mathematical model of a physical system specified as a set of input, output, and variables related by first-order differential equations or difference equations.
The following outline is provided as an overview of, and topical guide to, machine learning: . Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1]
The effect of z-score normalization on k-means clustering. 4 gaussian clusters of points are generated, then squashed along the y-axis, and a = clustering was computed. . Without normalization, the clusters were arranged along the x-axis, since it is the axis with most of varia