Search results
Results from the WOW.Com Content Network
Thomas William Hungerford (March 21, 1936 – November 28, 2014) [1] was an American mathematician who worked in algebra and mathematics education.He is the author or coauthor of several widely used [2] and widely cited [3] textbooks covering high-school to graduate-level mathematics.
In mathematics education, Finite Mathematics is a syllabus in college and university mathematics that is independent of calculus. A course in precalculus may be a prerequisite for Finite Mathematics.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
Discrete mathematics, also called finite mathematics, is the study of mathematical structures that are fundamentally discrete, in the sense of not supporting or requiring the notion of continuity. Most, if not all, of the objects studied in finite mathematics are countable sets , such as integers , finite graphs , and formal languages .
Hilbert's tenth problem is the tenth on the list of mathematical problems that the German mathematician David Hilbert posed in 1900. It is the challenge to provide a general algorithm that, for any given Diophantine equation (a polynomial equation with integer coefficients and a finite number of unknowns), can decide whether the equation has a solution with all unknowns taking integer values.
In mathematics, the classification of finite simple groups (popularly called the enormous theorem [1] [2]) is a result of group theory stating that every finite simple group is either cyclic, or alternating, or belongs to a broad infinite class called the groups of Lie type, or else it is one of twenty-six exceptions, called sporadic (the Tits group is sometimes regarded as a sporadic group ...
The term finite mathematics is sometimes applied to parts of the field of discrete mathematics that deals with finite sets, particularly those areas relevant to business. Research in discrete mathematics increased in the latter half of the twentieth century partly due to the development of digital computers which operate in "discrete" steps and ...
A lattice in a locally compact topological group is a discrete subgroup with the property that the quotient space has finite invariant measure. In the special case of subgroups of R n , this amounts to the usual geometric notion of a lattice , and both the algebraic structure of lattices and the geometry of the totality of all lattices are ...