Search results
Results from the WOW.Com Content Network
The minimization of the Gibbs free energy is a form of the principle of minimum energy (minimum 'free' energy or exergy), which follows from the entropy maximization principle for closed systems. Moreover, the Gibbs free energy equation, in modified form, can be used for open systems , including situations where chemical potential terms are ...
Thus, in traditional use, the term "free" was attached to Gibbs free energy for systems at constant pressure and temperature, or to Helmholtz free energy for systems at constant temperature, to mean ‘available in the form of useful work.’ [8] With reference to the Gibbs free energy, we need to add the qualification that it is the energy ...
That is, higher entropy reduces the exergy or free energy available relative to the energy level . Work can be produced from this energy, such as in an isothermal process, but any entropy generation during the process will cause the destruction of exergy (irreversibility) and the reduction of these thermodynamic potentials. Further, exergy ...
The maximum entropy principle: For a closed system with fixed internal energy (i.e. an isolated system), the entropy is maximized at equilibrium. The minimum energy principle: For a closed system with fixed entropy, the total energy is minimized at equilibrium.
This law of entropy increase quantifies the reduction in the capacity of an isolated compound thermodynamic system to do thermodynamic work on its surroundings, or indicates whether a thermodynamic process may occur. For example, whenever there is a suitable pathway, heat spontaneously flows from a hotter body to a colder one.
Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Owing to these early developments, the typical example of entropy change ΔS is that associated with phase change. In solids, for example, which are typically ordered on the molecular scale, usually have smaller entropy than liquids, and liquids have smaller entropy than gases and colder gases have smaller entropy than hotter gases.