enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Naismith's rule - Wikipedia

    en.wikipedia.org/wiki/Naismith's_rule

    Assuming an individual can maintain a speed on the flat of 5 km/h, the route will take 6 hours and 34 minutes. The simplicity of this approach is that the time taken can be easily adjusted for an individual's own (chosen) speed on the flat; at 8 km/h (flat speed) the route will take 4 hours and 6 minutes.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.

  4. Speed - Wikipedia

    en.wikipedia.org/wiki/Speed

    The average speed of an object in an interval of time is the distance travelled by the object divided by the duration of the interval; [2] the instantaneous speed is the limit of the average speed as the duration of the time interval approaches zero. Speed is the magnitude of velocity (a vector), which indicates additionally the direction of ...

  5. Time dilation - Wikipedia

    en.wikipedia.org/wiki/Time_dilation

    The faster the relative velocity, the greater the time dilation between them, with time slowing to a stop as one clock approaches the speed of light (299,792,458 m/s). In theory, time dilation would make it possible for passengers in a fast-moving vehicle to advance into the future in a short period of their own time.

  6. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  7. Jiffy (time) - Wikipedia

    en.wikipedia.org/wiki/Jiffy_(time)

    The speed of light in vacuum provides a convenient universal relationship between distance and time, so in physics (particularly in quantum physics) and often in chemistry, a jiffy is defined as the time taken for light to travel some specified distance.

  8. Transmission time - Wikipedia

    en.wikipedia.org/wiki/Transmission_time

    The propagation delay of a physical link can be calculated by dividing the distance (the length of the medium) in meter by its propagation speed in m/s. Propagation time = Distance / propagation speed. Example: Ethernet communication over a UTP copper cable with maximum distance of 100 meter between computer and switching node results in:

  9. Comoving and proper distances - Wikipedia

    en.wikipedia.org/wiki/Comoving_and_proper_distances

    The comoving distance from an observer to a distant object (e.g. galaxy) can be computed by the following formula (derived using the Friedmann–Lemaître–Robertson–Walker metric): = ′ (′) where a(t′) is the scale factor, t e is the time of emission of the photons detected by the observer, t is the present time, and c is the speed of ...