Search results
Results from the WOW.Com Content Network
The Eckhorn model provided a simple and effective tool for studying small mammal’s visual cortex, and was soon recognized as having significant application potential in image processing. In 1994, Johnson adapted the Eckhorn model to an image processing algorithm, calling this algorithm a pulse-coupled neural network.
Caffe supports many different types of deep learning architectures geared towards image classification and image segmentation. It supports CNN, RCNN, LSTM and fully-connected neural network designs. [8] Caffe supports GPU- and CPU-based acceleration computational kernel libraries such as Nvidia cuDNN and Intel MKL. [9] [10]
These algorithms have been used, for example, for perception in robotics to filter outliers from noisy data, stitch 3D point clouds together, segment relevant parts of a scene, extract keypoints and compute descriptors to recognize objects in the world based on their geometric appearance, and create surfaces from point clouds and visualize them.
ITK stands for The Insight Segmentation and Registration Toolkit. The toolkit provides leading-edge segmentation and registration algorithms in two, three, and more dimensions. ITK uses the CMake build environment to manage the configuration process. The software is implemented in C++ and it is wrapped for Python.
A minimum spanning tree (MST) is a minimum-weight, cycle-free subset of a graph's edges such that all nodes are connected. In 2004, Felzenszwalb introduced a segmentation method [4] based on Kruskal's MST algorithm. Edges are considered in increasing order of weight; their endpoint pixels are merged into a region if this doesn't cause a cycle ...
This is a list of free and open-source software packages (), computer software licensed under free software licenses and open-source licenses.Software that fits the Free Software Definition may be more appropriately called free software; the GNU project in particular objects to their works being referred to as open-source. [1]
In digital image processing and computer vision, image segmentation is the process of partitioning a digital image into multiple image segments, also known as image regions or image objects (sets of pixels). The goal of segmentation is to simplify and/or change the representation of an image into something that is more meaningful and easier to ...
Image captioning 2016 [8] R. Krishna et al. Berkeley 3-D Object Dataset 849 images taken in 75 different scenes. About 50 different object classes are labeled. Object bounding boxes and labeling. 849 labeled images, text Object recognition 2014 [9] [10] A. Janoch et al. Berkeley Segmentation Data Set and Benchmarks 500 (BSDS500)