enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Enthalpy of neutralization - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_neutralization

    In chemistry and thermodynamics, the enthalpy of neutralization (ΔH n) is the change in enthalpy that occurs when one equivalent of an acid and a base undergo a neutralization reaction to form water and a salt. It is a special case of the enthalpy of reaction. It is defined as the energy released with the formation of 1 mole of water.

  3. Exothermic reaction - Wikipedia

    en.wikipedia.org/wiki/Exothermic_reaction

    In an exothermic reaction, by definition, the enthalpy change has a negative value: ΔH = H products - H reactants < 0. where a larger value (the higher energy of the reactants) is subtracted from a smaller value (the lower energy of the products). For example, when hydrogen burns: 2H 2 (g) + O 2 (g) → 2H 2 O (g) ΔH⚬ = −483.6 kJ/mol [3]

  4. Standard enthalpy of reaction - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_reaction

    The hydrogenation of one mole of acetylene yields ethane as a product and is described by the equation C 2 H 2 (g) + 2 H 2 (g) → C 2 H 6 (g). Standard enthalpy of neutralization is the change in enthalpy that occurs when an acid and base undergo a neutralization reaction to form one mole of water.

  5. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    This means that a mixture of gas and liquid leaves the throttling valve. Since the enthalpy is an extensive parameter, the enthalpy in f ( h f) is equal to the enthalpy in g ( h g) multiplied by the liquid fraction in f ( x f) plus the enthalpy in h ( h h) multiplied by the gas fraction in f (1 − x f). So

  6. Standard enthalpy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_formation

    Δ latt H corresponds to U L in the text. The downward arrow "electron affinity" shows the negative quantity –EA F, since EA F is usually defined as positive. For ionic compounds, the standard enthalpy of formation is equivalent to the sum of several terms included in the Born–Haber cycle. For example, the formation of lithium fluoride,

  7. Enthalpy of mixing - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_mixing

    An ideal mixture is any in which the arithmetic mean (with respect to mole fraction) of the two pure substances is the same as that of the final mixture. Among other important thermodynamic simplifications, this means that enthalpy of mixing is zero: Δ H m i x , i d e a l = 0 {\displaystyle \Delta H_{mix,ideal}=0} .

  8. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    The Van 't Hoff equation relates the change in the equilibrium constant, K eq, of a chemical reaction to the change in temperature, T, given the standard enthalpy change, Δ r H ⊖, for the process. The subscript r {\displaystyle r} means "reaction" and the superscript ⊖ {\displaystyle \ominus } means "standard".

  9. Hess's law - Wikipedia

    en.wikipedia.org/wiki/Hess's_law

    Hess's law states that the change of enthalpy in a chemical reaction is the same regardless of whether the reaction takes place in one step or several steps, provided the initial and final states of the reactants and products are the same.