Search results
Results from the WOW.Com Content Network
In computer science, the shunting yard algorithm is a method for parsing arithmetical or logical expressions, or a combination of both, specified in infix notation.It can produce either a postfix notation string, also known as reverse Polish notation (RPN), or an abstract syntax tree (AST). [1]
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
The algorithm that is presented here does not need an explicit stack; instead, it uses recursive calls to implement the stack. The algorithm is not a pure operator-precedence parser like the Dijkstra shunting yard algorithm. It assumes that the primary nonterminal is parsed in a separate subroutine, like in a recursive descent parser.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once.
The implementation of map above on singly linked lists is not tail-recursive, so it may build up a lot of frames on the stack when called with a large list. Many languages alternately provide a "reverse map" function, which is equivalent to reversing a mapped list, but is tail-recursive.
Simulate the increment of the while-loop counter c [i] += 1 // Simulate recursive call reaching the base case by bringing the pointer to the base case analog in the array i:= 1 else // Calling permutations(i+1, A) has ended as the while-loop terminated. Reset the state and simulate popping the stack by incrementing the pointer. c [i]:= 0 i += 1 ...
When reduction rule r7 is used instead of rule r6, the maximum length of the stack is only (+). The length of the stack reflects the recursion depth. As the reduction according to the rules {r4, r5, r7} involves a smaller maximum depth of recursion, [n 6] this computation is more efficient in that respect.
Using CPS without tail call optimization (TCO) will cause not only the constructed continuation to potentially grow during recursion, but also the call stack. This is usually undesirable, but has been used in interesting ways—see the Chicken Scheme compiler. As CPS and TCO eliminate the concept of an implicit function return, their combined ...