Search results
Results from the WOW.Com Content Network
All plants, including crop, require air (specifically, oxygen) to respire, produce energy, and keep their cells alive. In agriculture, waterlogging typically blocks air from getting to the roots. [3] With the exception of rice (Oryza sativa), [4] [5] most crops like maize and potato, [6] [7] [8] are therefore highly intolerant to waterlogging.
Symptoms will often appear overnight, affecting many types of plants. Leaves and stems may turn black, and buds and flowers may be discoloured, and frosted blooms may not produce fruit. Many annual plants, or plants grown in frost free areas, can suffer from damage when the air temperature drops below 40 degrees Fahrenheit (4 degrees Celsius).
Moisture stress is a form of abiotic stress that occurs when the moisture of plant tissues is reduced to suboptimal levels. Water stress occurs in response to atmospheric and soil water availability when the transpiration rate exceeds the rate of water uptake by the roots and cells lose turgor pressure .
As plants begin to produce shoots with fully functional leaves, ABA levels begin to increase again, slowing down cellular growth in more "mature" areas of the plant. Stress from water or predation affects ABA production and catabolism rates, mediating another cascade of effects that trigger specific responses from targeted cells.
Plant stress research looks at the response of plants to limitations and excesses of the main abiotic factors (light, temperature, water and nutrients), and of other stress factors that are important in particular situations (e.g. pests, pathogens, or pollutants). Plant stress measurement usually focuses on taking measurements from living plants.
In literature, not much information can be found on the relations between the various regular surface field drainage systems, the reduction in the degree of waterlogging, and the agricultural or environmental effects. It is therefore difficult to develop sound agricultural criteria for the regular surface field drainage systems.
Plants cannot avoid waterlogging, but many species overcome the lack of oxygen in the soil by transporting oxygen to the root from tissues that are not submerged. Species that are tolerant of waterlogging develop specialised roots near the soil surface and aerenchyma to allow the diffusion of oxygen from the shoot to the root.
The galls occur more commonly on plants under stress, i.e. very dry conditions, waterlogging or hedge cutting, whereas vigorously growing plants are less commonly found to have galls. Whether the vigorous plant suppresses gall formation or is avoided by the wasp in favor of easier targets is unknown.