enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition. Other types of manifolds are formed by adding structure to a topological manifold (e.g. differentiable manifolds are topological manifolds equipped with a differential structure).

  3. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    After a line, a circle is the simplest example of a topological manifold. Topology ignores bending, so a small piece of a circle is treated the same as a small piece of a line. Considering, for instance, the top part of the unit circle, x 2 + y 2 = 1, where the y-coordinate is positive (indicated by the yellow arc in Figure 1).

  4. List of topologies - Wikipedia

    en.wikipedia.org/wiki/List_of_topologies

    Branching line − A non-Hausdorff manifold. Double origin topology; E 8 manifold − A topological manifold that does not admit a smooth structure. Euclidean topology − The natural topology on Euclidean space induced by the Euclidean metric, which is itself induced by the Euclidean norm.

  5. List of manifolds - Wikipedia

    en.wikipedia.org/wiki/List_of_manifolds

    This is a list of particular manifolds, by Wikipedia page. See also list of geometric topology topics . For categorical listings see Category:Manifolds and its subcategories.

  6. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    A topological manifold that is in the image of is said to "admit a differentiable structure", and the fiber over a given topological manifold is "the different differentiable structures on the given topological manifold". Thus given two categories, the two natural questions are:

  7. Category of manifolds - Wikipedia

    en.wikipedia.org/wiki/Category_of_manifolds

    The objects of Man • p are pairs (,), where is a manifold along with a basepoint , and its morphisms are basepoint-preserving p-times continuously differentiable maps: e.g. : (,) (,), such that () =. [1] The category of pointed manifolds is an example of a comma category - Man • p is exactly ({}), where {} represents an arbitrary singleton ...

  8. Timeline of manifolds - Wikipedia

    en.wikipedia.org/wiki/Timeline_of_manifolds

    Manifolds in contemporary mathematics come in a number of types. These include: smooth manifolds, which are basic in calculus in several variables, mathematical analysis and differential geometry; piecewise-linear manifolds; topological manifolds. There are also related classes, such as homology manifolds and orbifolds, that resemble manifolds.

  9. Generalized Poincaré conjecture - Wikipedia

    en.wikipedia.org/wiki/Generalized_Poincaré...

    In the mathematical area of topology, the generalized Poincaré conjecture is a statement that a manifold that is a homotopy sphere is a sphere. More precisely, one fixes a category of manifolds: topological ( Top ), piecewise linear ( PL ), or differentiable ( Diff ).