Search results
Results from the WOW.Com Content Network
The rule states that with the addition of a protic acid HX or other polar reagent to an asymmetric alkene, the acid hydrogen (H) or electropositive part gets attached to the carbon with more hydrogen substituents, and the halide (X) group or electronegative part gets attached to the carbon with more alkyl substituents. This is in contrast to ...
Alkenes that are particularly amenable to asymmetric hydrogenation often feature a polar functional group adjacent to the site to be hydrogenated. In the absence of this functional group, catalysis often results in low ee's. For some unfunctionalized olefins, iridium with P,N-based ligands) have proven effective, however. Alkene substrates are ...
Enantioselective synthesis, also called asymmetric synthesis, [1] is a form of chemical synthesis. It is defined by IUPAC as "a chemical reaction (or reaction sequence) in which one or more new elements of chirality are formed in a substrate molecule and which produces the stereoisomeric ( enantiomeric or diastereomeric ) products in unequal ...
K. Barry Sharpless was the first to develop a general, reliable enantioselective alkene dihydroxylation, referred to as the Sharpless asymmetric dihydroxylation (SAD). Low levels of OsO 4 are combined with a stoichiometric ferricyanide oxidant in the presence of chiral nitrogenous ligands to create an asymmetric environment around the oxidant.
The Heck reaction is the palladium-catalyzed coupling of an aryl or alkenyl halide with an alkene to form a substituted alkene. [2] Intramolecular variants of the reaction may be used to generate cyclic products containing endo or exo double bonds. Ring sizes produced by the intramolecular Heck reaction range from four to twenty-seven atoms.
Dynamic kinetic resolution of 1,4 conjugate reduction. The rate-limiting step is the copper complex interaction with the double bond and the transfer of hydrogen. 1,4 conjugate reduction to cyclic enones. Copper proved to be an excellent metal in this reaction due to its ability to complex with the oxygen when the hydrogen was added.
Low barrier hydrogen bonds occur in the water-excluding environments of proteins. [4] Multiple residues act together in a charge-relay system to control the pKa values of the residues involved. LBHBs also occur on the surfaces of proteins, but are unstable due to their proximity to bulk water, and the conflicting requirements of strong salt ...
The ene reaction is one of the most common forms of group transfer reactions, where an allylic hydrogen is transferred to an alkene in a cyclic concerted mechanism. The ene reaction is further divided into subgroups including intramolecular ene, metallo-ene, and carbonyl ene reactions. [8]