Search results
Results from the WOW.Com Content Network
MTHFR is the rate-limiting enzyme in the methyl cycle, which includes the conversion of homocysteine into methionine. Defects in variants of MTHFR can therefore lead to hyperhomocysteinemia. [9] There are two common variants of MTHFR deficiency. In the more significant of the two, the individual is homozygous for the 677T polymorphism.
Methylenetetrahydrofolate reductase (MTHFR) is the rate-limiting enzyme in the methyl cycle, and it is encoded by the MTHFR gene. [5] Methylenetetrahydrofolate reductase catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cosubstrate for homocysteine remethylation to methionine.
C677T or rs1801133 is a genetic variation—a single nucleotide polymorphism (SNP)—in the MTHFR gene. Among Americans the frequency of T-homozygosity ranges from 1% or less among people of sub-Saharan African descent to 20% or more among Italians and Hispanics. [1] It has been related to schizophrenia [2] Alzheimer's disease [3] depression [4 ...
Co-expression of this mutation and the 677T polymorphism in methionine tetrahydrofolate reductase (MTHFR) Methylenetetrahydrofolate reductase act to further the extent of DNA damage. [36] Hypomethylation due to impaired methylation up regulates atherosclerotic susceptible genes whilst down regulating atherosclerosis protective genes. [36]
Estrogen insensitivity syndrome (EIS), or estrogen resistance, is a form of congenital estrogen deficiency or hypoestrogenism [2] which is caused by a defective estrogen receptor (ER) – specifically, the estrogen receptor alpha (ERα) – that results in an inability of estrogen to mediate its biological effects in the body. [3]
The risk depends on the types of hormones used, the dose of estrogen, and the presence of other thrombophilic risk factors. [28] Various mechanisms, such as deficiency of protein S and tissue factor pathway inhibitor, are said to be responsible. [29] Obesity has long been regarded as a risk factor for venous thrombosis.
Compound heterozygosity reflects the diversity of the mutation base for many autosomal recessive genetic disorders; mutations in most disease-causing genes have arisen many times. This means that many cases of disease arise in individuals who have two unrelated alleles, who technically are heterozygotes , but both the alleles are defective.
In genetics, a maternal effect occurs when the phenotype of an organism is determined by the genotype of its mother. [1] For example, if a mutation is maternal effect recessive, then a female homozygous for the mutation may appear phenotypically normal, however her offspring will show the mutant phenotype, even if they are heterozygous for the mutation.