enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth's rotation - Wikipedia

    en.wikipedia.org/wiki/Earth's_rotation

    Earth's rotation or Earth's spin is the rotation of planet ... the celestial equator causes the Sun to ... inertial space is (7.292 115 0 ± 0.000 000 1) ...

  3. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    Figure 1: An attractive force F(r) causes the blue planet to move on the cyan circle. The green planet moves three times faster and thus requires a stronger centripetal force, which is supplied by adding an attractive inverse-cube force. The red planet is stationary; the force F(r) is balanced by a

  4. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    The common noun ‘moon’ (not capitalized) is used to mean any natural satellite of the other planets. Tidal force is the combination of out-of-balance forces and accelerations of (mostly) solid bodies that raises tides in bodies of liquid (oceans), atmospheres, and strains planets' and satellites' crusts.

  5. Rotation period (astronomy) - Wikipedia

    en.wikipedia.org/wiki/Rotation_period_(astronomy)

    In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day ), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars ( inertial space ).

  6. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    All eight planets in the Solar System orbit the Sun in the direction of the Sun's rotation, which is counterclockwise when viewed from above the Sun's north pole. Six of the planets also rotate about their axis in this same direction. The exceptions – the planets with retrograde rotation – are Venus and Uranus.

  7. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    Newton defined the force acting on a planet to be the product of its mass and the acceleration (see Newton's laws of motion). So: Every planet is attracted towards the Sun. The force acting on a planet is directly proportional to the mass of the planet and is inversely proportional to the square of its distance from the Sun.

  8. Angular mechanics - Wikipedia

    en.wikipedia.org/wiki/Angular_mechanics

    When planets spin, they generate angular momentum. This does things such as cause the planet to be slightly oval-shaped, and cause deformities [6] in the planet. Another example of angular mechanics in planetary motion is orbiting around a star. Because of the speed of the orbit, they do not go plummeting into their star.

  9. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    The planet-fixed values of v and θ are converted to space-fixed (inertial) values with the following conversions: [7] = + ⁡ ⁡ ⁡ + (⁡), where ω is the planet's rotational rate in radians per second, φ is the launch site latitude, and A z is the launch azimuth angle.