Search results
Results from the WOW.Com Content Network
If D is a simple type of region with its boundary consisting of the curves C 1, C 2, C 3, C 4, half of Green's theorem can be demonstrated. The following is a proof of half of the theorem for the simplified area D, a type I region where C 1 and C 3 are curves connected by vertical lines (possibly of zero length).
Poisson's electrical and magnetical investigations were generalized and extended in 1828 by George Green. Green's treatment is based on the properties of the function already used by Lagrange, Laplace, and Poisson, which represents the sum of all the electric or magnetic charges in the field, divided by their respective distances from some given point: to this function Green gave the name ...
is the derivative of the Green's function along the inward-pointing unit normal vector ^. The integration is performed on the boundary, with measure d s {\displaystyle ds} . The function ν ( s ) {\displaystyle \nu (s)} is given by the unique solution to the Fredholm integral equation of the second kind,
Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation .
In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.
Green's functions are also useful tools in solving wave equations and diffusion equations. In quantum mechanics, Green's function of the Hamiltonian is a key concept with important links to the concept of density of states. The Green's function as used in physics is usually defined with the opposite sign, instead.
In many-body theory, the term Green's function (or Green function) is sometimes used interchangeably with correlation function, but refers specifically to correlators of field operators or creation and annihilation operators. The name comes from the Green's functions used to solve inhomogeneous differential equations, to which they are loosely ...
The theorem of de Rham shows that this map is actually an isomorphism, a far-reaching generalization of the Poincaré lemma. As suggested by the generalized Stokes' theorem, the exterior derivative is the "dual" of the boundary map on singular simplices.