Ads
related to: proof of sets examplesebay.com has been visited by 1M+ users in the past month
Search results
Results from the WOW.Com Content Network
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Cantor's diagonal argument (among various similar names [note 1]) is a mathematical proof that there are infinite sets which cannot be put into one-to-one correspondence with the infinite set of natural numbers – informally, that there are sets which in some sense contain more elements than there are positive integers.
These are examples of an extremely important and powerful property of set algebra, namely, the principle of duality for sets, which asserts that for any true statement about sets, the dual statement obtained by interchanging unions and intersections, interchanging and and reversing inclusions is also true.
The best known example of an uncountable set is the set of all real numbers; Cantor's diagonal argument shows that this set is uncountable. The diagonalization proof technique can also be used to show that several other sets are uncountable, such as the set of all infinite sequences of natural numbers (see: (sequence A102288 in the OEIS)), and the set of all subsets of the set ...
Cantor's paradox is the name given to a contradiction following from Cantor's theorem together with the assumption that there is a set containing all sets, the universal set. In order to distinguish this paradox from the next one discussed below, it is important to note what this contradiction is.
In combinatorics, bijective proof is a proof technique for proving that two sets have equally many elements, or that the sets in two combinatorial classes have equal size, by finding a bijective function that maps one set one-to-one onto the other. This technique can be useful as a way of finding a formula for the number of elements of certain ...
The empty set is also occasionally called the null set, [11] though this name is ambiguous and can lead to several interpretations. The power set of a set A, denoted (), is the set whose members are all of the possible subsets of A. For example, the power set of {1, 2} is { {}, {1}, {2}, {1, 2} }.
Within set theory, many collections of sets turn out to be proper classes. Examples include the class of all sets (the universal class), the class of all ordinal numbers, and the class of all cardinal numbers. One way to prove that a class is proper is to place it in bijection with the class of all ordinal numbers.
Ads
related to: proof of sets examplesebay.com has been visited by 1M+ users in the past month