enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cantor's diagonal argument - Wikipedia

    en.wikipedia.org/wiki/Cantor's_diagonal_argument

    A generalized form of the diagonal argument was used by Cantor to prove Cantor's theorem: for every set S, the power set of S—that is, the set of all subsets of S (here written as P(S))—cannot be in bijection with S itself. This proof proceeds as follows: Let f be any function from S to P(S). It suffices to prove f cannot be surjective.

  3. Subset - Wikipedia

    en.wikipedia.org/wiki/Subset

    A is a subset of B (denoted ) and, conversely, B is a superset of A (denoted ). In mathematics, a set A is a subset of a set B if all elements of A are also elements of B; B is then a superset of A. It is possible for A and B to be equal; if they are unequal, then A is a proper subset of B.

  4. Cantor's theorem - Wikipedia

    en.wikipedia.org/wiki/Cantor's_theorem

    Counting the empty set as a subset, a set with elements has a total of subsets, and the theorem holds because > for all non-negative integers. Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also.

  5. Algebra of sets - Wikipedia

    en.wikipedia.org/wiki/Algebra_of_sets

    The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".

  6. Combinatorial proof - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_proof

    An archetypal double counting proof is for the well known formula for the number () of k-combinations (i.e., subsets of size k) of an n-element set: = (+) ().Here a direct bijective proof is not possible: because the right-hand side of the identity is a fraction, there is no set obviously counted by it (it even takes some thought to see that the denominator always evenly divides the numerator).

  7. Closure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Closure_(mathematics)

    In linear algebra, the closure of a non-empty subset of a vector space (under vector-space operations, that is, addition and scalar multiplication) is the linear span of this subset. It is a vector space by the preceding general result, and it can be proved easily that is the set of linear combinations of elements of the subset.

  8. Helly's theorem - Wikipedia

    en.wikipedia.org/wiki/Helly's_theorem

    We prove the finite version, using Radon's theorem as in the proof by Radon (1921).The infinite version then follows by the finite intersection property characterization of compactness: a collection of closed subsets of a compact space has a non-empty intersection if and only if every finite subcollection has a non-empty intersection (once you fix a single set, the intersection of all others ...

  9. σ-algebra - Wikipedia

    en.wikipedia.org/wiki/Σ-algebra

    A σ-algebra of subsets is a set algebra of subsets; elements of the latter only need to be closed under the union or intersection of finitely many subsets, which is a weaker condition. [ 2 ] The main use of σ-algebras is in the definition of measures ; specifically, the collection of those subsets for which a given measure is defined is ...