Search results
Results from the WOW.Com Content Network
A sample 19F NMR spectrum of a simple organic compound. Integrations are shown under each peak. 19F NMR spectrum of 1-bromo-3,4,5-trifluorobenzene. The expansion shows the spin–spin coupling pattern arising from the para-fluorine coupling to the 2 meta-fluorine and 2 ortho proton nuclei.
Spectral Database for Organic Compounds National Institute of Advanced Industrial Science and Technology (AIST), Japan Organic compounds Spectra:IR Raman MASS ESR 1 H NMR 13 C NMR SDBS No curated "SDBS". 34,000 Serum Metabolome Database: The Metabolomics Innovation Centre: found in blood serum "Serum Metabolome DB". 4,651 Solvent Selection Tool
The database contains also a smaller amount of NMR data from carbohydrates, cofactors and ligands. [1] These data are crossreferenced to 3D structures in the PDB when available. The NMR data are provided in the NMR-STAR file format and a number of format conversion tools are available at the site to convert files from NMR-STAR to other formats. [1]
The Spectral Database for Organic Compounds (SDBS) is developed and maintained by Japan's National Institute of Advanced Industrial Science and Technology. SDBS includes 14700 1 H NMR spectra and 13000 13 C NMR spectra as well as FT-IR, Raman, ESR, and MS data. The data are stored and displayed as an image of the processed data.
The Spectral Database for Organic Compounds (SDBS) is a free online searchable database hosted by the National Institute of Advanced Industrial Science and Technology (AIST) in Japan, that contains spectral data for ca 34,000 organic molecules. [1] The database is available in English and in Japanese and it includes six types of spectra: laser ...
A chemical database is a database specifically designed to store chemical information. This information is about chemical and crystal structures , spectra, reactions and syntheses, and thermophysical data.
Yoshito Kishi's group at Harvard University has reported NMR databases for 1,3,5-triols [1] 1,2,3-triols, 1,2,3,4-tetraols, and 1,2,3,4,5-pentaols. [2] The stereochemistry of any 1,2,3-triol may be determined by comparing it with the database, even if the remainder of the unknown molecule is different from the database template compounds.
NMR database (NMR = nuclear magnetic resonance) may refer to: Nuclear magnetic resonance spectra database, a collection of NMR spectra for a large number of compounds; Nuclear magnetic resonance database method, a strategy to identify the stereochemistry of certain chiral compounds