Search results
Results from the WOW.Com Content Network
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
The synthetic affine definition of the midpoint M of a segment AB is the projective harmonic conjugate of the point at infinity, P, of the line AB. That is, the point M such that H[A,B; P,M]. [6] When coordinates can be introduced in an affine geometry, the two definitions of midpoint will coincide. [7]
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The term minimum distance may refer to Minimum distance estimation, a statistical method for fitting a model to data; Closest pair of points problem, the algorithmic problem of finding two points that have the minimum distance among a larger set of points; Euclidean distance, the minimum length of any curve between two points in the plane
The simplest method of drawing a line involves directly calculating pixel positions from a line equation. Given a starting point (,) and an end point (,), points on the line fulfill the equation = +, with = = being the slope of the line.
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
In either the coordinate or vector formulations, one may verify that the given point lies on the given plane by plugging the point into the equation of the plane. To see that it is the closest point to the origin on the plane, observe that p {\displaystyle \mathbf {p} } is a scalar multiple of the vector v {\displaystyle \mathbf {v} } defining ...
the distance between the two lines is the distance between the two intersection points of these lines with the perpendicular line = /. This distance can be found by first solving the linear systems {= + = /, and {= + = /, to get the coordinates of the intersection points. The solutions to the linear systems are the points