Search results
Results from the WOW.Com Content Network
The general definition of a qubit as the quantum state of a two-level quantum system.In quantum computing, a qubit (/ ˈ k juː b ɪ t /) or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device.
Just as the bit is the basic concept of classical information theory, the qubit is the fundamental unit of quantum information.The same term qubit is used to refer to an abstract mathematical model and to any physical system that is represented by that model.
Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations. A physical qubit is a physical device that behaves as a two-state quantum system, used as a component of a computer system.
The editorial in the inaugural issue of the journal Quantum Economics and Finance says: "Quantum economics and finance is the application of probability based on projective geometry—also known as quantum probability—to modelling in economics and finance. It draws on related areas such as quantum cognition, quantum game theory, quantum ...
A qubit (/ ˈ k juː b ɪ t /) or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system , one of the simplest quantum systems displaying the peculiarity of quantum mechanics.
Quantum information is the information of the state of a quantum system. It is the basic entity of study in quantum information theory, [1] [2] [3] and can be manipulated using quantum information processing techniques. Quantum information refers to both the technical definition in terms of Von Neumann entropy and the general computational term.
The bit is the most basic unit of information in computing and digital communication. The name is a portmanteau of binary digit. [1] The bit represents a logical state with one of two possible values. These values are most commonly represented as either " 1" or "0 ", but other representations such as true/false, yes/no, on/off, or +/− are ...
The quantum superposition of charge states can be achieved by tuning the gate voltage U that controls the chemical potential of the island. The charge qubit is typically read-out by electrostatically coupling the island to an extremely sensitive electrometer such as the radio-frequency single-electron transistor .