Search results
Results from the WOW.Com Content Network
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
This metric is well suited to intermittent-demand series (a data set containing a large amount of zeros) because it never gives infinite or undefined values [1] except in the irrelevant case where all historical data are equal. [3] When comparing forecasting methods, the method with the lowest MASE is the preferred method.
In pattern recognition, information retrieval, object detection and classification (machine learning), precision and recall are performance metrics that apply to data retrieved from a collection, corpus or sample space. Precision (also called positive predictive value) is the fraction of relevant instances among the retrieved instances. Written ...
Two data points for which quantity disagreement is 0 and allocation disagreement is 2 for both MAE and RMSE. In remote sensing the MAE is sometimes expressed as the sum of two components: quantity disagreement and allocation disagreement.
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values. Generally, time series data is modelled as a stochastic process.
In time series analysis, the moving-average model (MA model), also known as moving-average process, is a common approach for modeling univariate time series. [1] [2] The moving-average model specifies that the output variable is cross-correlated with a non-identical to itself random-variable.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Specifically, for a wide-sense stationary time series, the mean and the variance/autocovariance are constant over time. Differencing in statistics is a transformation applied to a non-stationary time-series in order to make it stationary in the mean sense (that is, to remove the non-constant trend), but it does not affect the non-stationarity ...