enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Plastic bending - Wikipedia

    en.wikipedia.org/wiki/Plastic_bending

    Plastic bending [1] is a nonlinear behavior particular to members made of ductile materials that frequently achieve much greater ultimate bending strength than indicated by a linear elastic bending analysis. In both the plastic and elastic bending analyses of a straight beam, it is assumed that the strain distribution is linear about the ...

  3. Plasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Plasticity_(physics)

    Plasticity in a crystal of pure metal is primarily caused by two modes of deformation in the crystal lattice: slip and twinning. Slip is a shear deformation which moves the atoms through many interatomic distances relative to their initial positions.

  4. Deformation (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deformation_(engineering)

    A popular misconception is that all materials that bend are "weak" and those that do not are "strong". In reality, many materials that undergo large elastic and plastic deformations, such as steel, are able to absorb stresses that would cause brittle materials, such as glass, with minimal plastic deformation ranges, to break. [7]

  5. Work hardening - Wikipedia

    en.wikipedia.org/wiki/Work_hardening

    The following discussion mostly applies to metals, especially steels, which are well studied. Work hardening occurs most notably for ductile materials such as metals. Ductility is the ability of a material to undergo plastic deformations before fracture (for example, bending a steel rod until it finally breaks).

  6. Ductility - Wikipedia

    en.wikipedia.org/wiki/Ductility

    Plastic deformation is the permanent distortion of a material under applied stress, as opposed to elastic deformation, which is reversible upon removing the stress. Ductility is a critical mechanical performance indicator, particularly in applications that require materials to bend, stretch, or deform in other ways without breaking.

  7. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    The plastic section modulus is used to calculate a cross-section's capacity to resist bending after yielding has occurred across the entire section. It is used for determining the plastic, or full moment, strength and is larger than the elastic section modulus, reflecting the section's strength beyond the elastic range.

  8. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Plastic deformation is retained after the release of the applied stress. Most materials in the linear-elastic category are usually capable of plastic deformation. Brittle materials, like ceramics, do not experience any plastic deformation and will fracture under relatively low strain, while ductile materials such as metallics, lead, or polymers ...

  9. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    In the absence of a qualifier, the term bending is ambiguous because bending can occur locally in all objects. Therefore, to make the usage of the term more precise, engineers refer to a specific object such as; the bending of rods, [2] the bending of beams, [1] the bending of plates, [3] the bending of shells [2] and so on.