enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Decision tree model - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_model

    Decision Tree Model. In computational complexity theory, the decision tree model is the model of computation in which an algorithm can be considered to be a decision tree, i.e. a sequence of queries or tests that are done adaptively, so the outcome of previous tests can influence the tests performed next.

  3. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    Decision trees can also be seen as generative models of induction rules from empirical data. An optimal decision tree is then defined as a tree that accounts for most of the data, while minimizing the number of levels (or "questions"). [8] Several algorithms to generate such optimal trees have been devised, such as ID3/4/5, [9] CLS, ASSISTANT ...

  4. Location theory - Wikipedia

    en.wikipedia.org/wiki/Location_theory

    Location theory has become an integral part of economic geography, regional science, and spatial economics. Location theory addresses questions of what economic activities are located where and why. Location theory or microeconomic theory generally assumes that agents act in their own self-interest. Firms thus choose locations that maximize ...

  5. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    The problem of learning an optimal decision tree is known to be NP-complete under several aspects of optimality and even for simple concepts. [35] [36] Consequently, practical decision-tree learning algorithms are based on heuristics such as the greedy algorithm where locally optimal decisions are made at each node. Such algorithms cannot ...

  6. Generalized additive model for location, scale and shape

    en.wikipedia.org/wiki/Generalized_additive_model...

    The first two population distribution parameters and are usually characterized as location and scale parameters, while the remaining parameter(s), if any, are characterized as shape parameters, e.g. skewness and kurtosis parameters, although the model may be applied more generally to the parameters of any population distribution with up to four ...

  7. Random forest - Wikipedia

    en.wikipedia.org/wiki/Random_forest

    This interpretability is one of the main advantages of decision trees. It allows developers to confirm that the model has learned realistic information from the data and allows end-users to have trust and confidence in the decisions made by the model. [37] [3] For example, following the path that a decision tree takes to make its decision is ...

  8. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    The feature with the optimal split i.e., the highest value of information gain at a node of a decision tree is used as the feature for splitting the node. The concept of information gain function falls under the C4.5 algorithm for generating the decision trees and selecting the optimal split for a decision tree node. [1] Some of its advantages ...

  9. Location-allocation - Wikipedia

    en.wikipedia.org/wiki/Location-allocation

    Algorithms can assign those demand points to one or more facilities, taking into account factors such as the number of facilities available, their cost, and the maximum impedance from a facility to a point. [1] Location-allocation models aim to locate the optimal location for each facility.