enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lebesgue measure - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_measure

    Lebesgue measure is both locally finite and inner regular, and so it is a Radon measure. Lebesgue measure is strictly positive on non-empty open sets, and so its support is the whole of R n. If A is a Lebesgue-measurable set with λ(A) = 0 (a null set), then every subset of A is also a null set. A fortiori, every subset of A is measurable.

  3. Measure (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Measure_(mathematics)

    The Hausdorff measure is a generalization of the Lebesgue measure to sets with non-integer dimension, in particular, fractal sets. Every probability space gives rise to a measure which takes the value 1 on the whole space (and therefore takes all its values in the unit interval [0, 1]). Such a measure is called a probability measure or ...

  4. Henri Lebesgue - Wikipedia

    en.wikipedia.org/wiki/Henri_Lebesgue

    Henri Léon Lebesgue ForMemRS [1] (French: [ɑ̃ʁi leɔ̃ ləbɛɡ]; June 28, 1875 – July 26, 1941) was a French mathematician known for his theory of integration, which was a generalization of the 17th-century concept of integration—summing the area between an axis and the curve of a function defined for that axis.

  5. Lebesgue integral - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_integral

    The Lebesgue integral is obtained by slicing along the y-axis, using the 1-dimensional Lebesgue measure to measure the "width" of the slices. Folland (1999) summarizes the difference between the Riemann and Lebesgue approaches thus: "to compute the Riemann integral of f , one partitions the domain [ a , b ] into subintervals", while in the ...

  6. Carathéodory's extension theorem - Wikipedia

    en.wikipedia.org/wiki/Carathéodory's_extension...

    This is an extremely powerful result of measure theory, and leads, for example, to the Lebesgue measure. The theorem is also sometimes known as the Carathéodory– Fréchet extension theorem, the Carathéodory– Hopf extension theorem, the Hopf extension theorem and the Hahn – Kolmogorov extension theorem.

  7. Lebesgue's decomposition theorem - Wikipedia

    en.wikipedia.org/wiki/Lebesgue's_decomposition...

    Lebesgue's decomposition theorem can be refined in a number of ways. First, as the Lebesgue-Radon-Nikodym theorem.That is, let (,) be a measure space, a σ-finite positive measure on and a complex measure on .

  8. Borel measure - Wikipedia

    en.wikipedia.org/wiki/Borel_measure

    The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure known as the Lebesgue–Stieltjes measure, which may be associated to any function of bounded variation on the real line. The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of ...

  9. Lebesgue–Stieltjes integration - Wikipedia

    en.wikipedia.org/wiki/Lebesgue–Stieltjes...

    The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of this kind. Lebesgue–Stieltjes integrals , named for Henri Leon Lebesgue and Thomas Joannes Stieltjes , are also known as Lebesgue–Radon integrals or just Radon integrals , after Johann Radon , to whom much of the ...