Search results
Results from the WOW.Com Content Network
The M-y Diagram is a graphical representation of the conservation of momentum and can be applied over a hydraulic jump to find the upstream and downstream depths. We can see from the above example that the flow approaches supercritically at a depth of y 1. There is a jump to the subcritical conjugate depth of y 1 which is labeled as y 2 in ...
A polynomial weir is a weir that has a geometry defined by a polynomial equation of any order n. [11] In practice, most weirs are low-order polynomial weirs. The standard rectangular weir is, for example, a polynomial weir of order zero. The triangular (V-notch) and trapezoidal weirs are of order one. High-order polynomial weirs are providing ...
The depth changes abruptly over a comparatively short distance. Rapidly varied flow is known as a local phenomenon. Examples are the hydraulic jump and the hydraulic drop. Gradually-varied flow. The depth changes over a long distance. Continuous flow. The discharge is constant throughout the reach of the channel under consideration. This is ...
An illustration exists of a unitless E – Y diagram and how Energy and depth of flow change throughout a Parshall Flume. The two blue lines represent the q values, q 1 for the flow before the constriction, and q 2 representing the value at the constriction (q = Q/b = ft 2 /s, or flow over width in a
For channels of a given width, the hydraulic radius is greater for deeper channels. In wide rectangular channels, the hydraulic radius is approximated by the flow depth. The hydraulic radius is not half the hydraulic diameter as the name may suggest, but one quarter in the case of a full pipe. It is a function of the shape of the pipe, channel ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
They can be used to divert, disrupt or completely stop the flow. An example of a hydraulic structure would be a dam, which slows the normal flow rate of the river in order to power turbines. A hydraulic structure can be built in rivers, a sea, or any body of water where there is a need for a change in the natural flow of water. [1]
A drop structure, also known as a grade control, sill, or weir, is a manmade structure, typically small and built on minor streams, or as part of a dam's spillway, to pass water to a lower elevation while controlling the energy and velocity of the water as it passes over.