enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Poinsot's ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Poinsot's_ellipsoid

    The rigid body's motion is entirely determined by the motion of its inertia ellipsoid, which is rigidly fixed to the rigid body like a coordinate frame. Its inertia ellipsoid rolls, without slipping, on the invariable plane , with the center of the ellipsoid a constant height above the plane.

  3. Physical simulation - Wikipedia

    en.wikipedia.org/wiki/Physical_simulation

    The first constraint will be to put each torque in terms of the principal axes. This makes each torque much more difficult to program, but it simplifies our equations significantly. When we apply this constraint, we diagonalize the moment of inertia tensor, which simplifies our three equations into a special set of equations called Euler's ...

  4. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    There is an interesting difference in the way moment of inertia appears in planar and spatial movement. Planar movement has a single scalar that defines the moment of inertia, while for spatial movement the same calculations yield a 3 × 3 matrix of moments of inertia, called the inertia matrix or inertia tensor. [6] [7]

  5. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia, and sometimes as the angular mass.

  6. Tennis racket theorem - Wikipedia

    en.wikipedia.org/wiki/Tennis_racket_theorem

    The experiment can be performed with any object that has three different moments of inertia, for instance with a (rectangular) book, remote control, or smartphone. The effect occurs whenever the axis of rotation differs – even only slightly – from the object's second principal axis; air resistance or gravity are not necessary.

  7. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics , and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [ 1 ]

  8. Perpendicular axis theorem - Wikipedia

    en.wikipedia.org/wiki/Perpendicular_axis_theorem

    The perpendicular axis theorem (or plane figure theorem) states that for a planar lamina the moment of inertia about an axis perpendicular to the plane of the lamina is equal to the sum of the moments of inertia about two mutually perpendicular axes in the plane of the lamina, which intersect at the point where the perpendicular axis passes through.

  9. Rigid rotor - Wikipedia

    en.wikipedia.org/wiki/Rigid_rotor

    A rigid body can be (partially) characterized by the three eigenvalues of its moment of inertia tensor, which are real nonnegative values known as principal moments of inertia. In microwave spectroscopy—the spectroscopy based on rotational transitions—one usually classifies molecules (seen as rigid rotors) as follows: spherical rotors