enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic space - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_space

    Most hyperbolic surfaces have a non-trivial fundamental group π 1 = Γ; the groups that arise this way are known as Fuchsian groups. The quotient space H 2 ‍ / ‍ Γ of the upper half-plane modulo the fundamental group is known as the Fuchsian model of the hyperbolic surface. The Poincaré half plane is also hyperbolic, but is simply ...

  3. Hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_geometry

    The hyperbolic plane is a plane where every point is a saddle point. Hyperbolic plane geometry is also the geometry of pseudospherical surfaces, surfaces with a constant negative Gaussian curvature. Saddle surfaces have negative Gaussian curvature in at least some regions, where they locally resemble the hyperbolic plane.

  4. Stable manifold - Wikipedia

    en.wikipedia.org/wiki/Stable_manifold

    In the case of hyperbolic dynamics, the corresponding notion is that of the hyperbolic set. Example hyperbolic flow, illustrating stable and unstable manifolds. The vector field equation is (+ ⁡ (),). The stable manifold is the x-axis, and the unstable manifold is the other asymptotic curve crossing the x-axis.

  5. Hyperbolic manifold - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_manifold

    The simplest example of a hyperbolic manifold is hyperbolic space, as each point in hyperbolic space has a neighborhood isometric to hyperbolic space. A simple non-trivial example, however, is the once-punctured torus. This is an example of an (Isom(), )-manifold.

  6. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  7. Hyperbolic equilibrium point - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_equilibrium_point

    Strogatz notes that "hyperbolic is an unfortunate name—it sounds like it should mean 'saddle point'—but it has become standard." [1] Several properties hold about a neighborhood of a hyperbolic point, notably [2] Orbits near a two-dimensional saddle point, an example of a hyperbolic equilibrium. A stable manifold and an unstable manifold exist,

  8. Umbilical point - Wikipedia

    en.wikipedia.org/wiki/Umbilical_point

    A point p in a Riemannian submanifold is umbilical if, at p, the (vector-valued) Second fundamental form is some normal vector tensor the induced metric (First fundamental form). Equivalently, for all vectors U , V at p , II( U , V ) = g p ( U , V ) ν {\displaystyle \nu } , where ν {\displaystyle \nu } is the mean curvature vector at p .

  9. Hyperbolic motion - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_motion

    Hyperbolic motions are often taken from inversive geometry: these are mappings composed of reflections in a line or a circle (or in a hyperplane or a hypersphere for hyperbolic spaces of more than two dimensions). To distinguish the hyperbolic motions, a particular line or circle is taken as the absolute.