enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    The exact nature of this Hilbert space is dependent on the system; for example, the position and momentum states for a single non-relativistic spin zero particle is the space of all square-integrable functions, while the states for the spin of a single proton are unit elements of the two-dimensional complex Hilbert space of spinors.

  3. Dirac–von Neumann axioms - Wikipedia

    en.wikipedia.org/wiki/Dirac–von_Neumann_axioms

    If the C*-algebra is the algebra of all bounded operators on a Hilbert space , then the bounded observables are just the bounded self-adjoint operators on . If v {\displaystyle v} is a unit vector of H {\displaystyle \mathbb {H} } then ω ( A ) = v , A v {\displaystyle \omega (A)=\langle v,Av\rangle } is a state on the C*-algebra, meaning the ...

  4. Linear Operators (book) - Wikipedia

    en.wikipedia.org/wiki/Linear_Operators_(book)

    Canonically cited as Dunford and Schwartz, [1] the textbook has been referred to as "the definitive work" on linear operators. [2]: 2 The work began as a written set of solutions to the problems for Dunford's graduate course in linear operators at Yale. [3]: 30 [1] Schwartz, a prodigy, had taken his undergraduate degree at Yale in 1948, age 18 ...

  5. images.huffingtonpost.com

    images.huffingtonpost.com/2012-08-30-3258_001.pdf

    Created Date: 8/30/2012 4:52:52 PM

  6. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    The name spectral theory was introduced by David Hilbert in his original formulation of Hilbert space theory, which was cast in terms of quadratic forms in infinitely many variables. The original spectral theorem was therefore conceived as a version of the theorem on principal axes of an ellipsoid , in an infinite-dimensional setting.

  7. Bergman kernel - Wikipedia

    en.wikipedia.org/wiki/Bergman_kernel

    One key observation about this picture is that L 2,h (D) may be identified with the space of holomorphic (n,0)-forms on D, via multiplication by . Since the L 2 {\displaystyle L^{2}} inner product on this space is manifestly invariant under biholomorphisms of D, the Bergman kernel and the associated Bergman metric are therefore automatically ...

  8. Template : Halmos Introduction to Hilbert Space and the ...

    en.wikipedia.org/wiki/Template:Halmos...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Help; Learn to edit; Community portal; Recent changes; Upload file

  9. Dilation (operator theory) - Wikipedia

    en.wikipedia.org/wiki/Dilation_(operator_theory)

    In operator theory, a dilation of an operator T on a Hilbert space H is an operator on a larger Hilbert space K, whose restriction to H composed with the orthogonal projection onto H is T. More formally, let T be a bounded operator on some Hilbert space H, and H be a subspace of a larger Hilbert space H' . A bounded operator V on H' is a ...