enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Super star cluster - Wikipedia

    en.wikipedia.org/wiki/Super_star_cluster

    A super star cluster (SSC) is a very massive young open cluster that is thought to be the precursor of a globular cluster. [1] These clusters called "super" because they are relatively more luminous and contain more mass than other young star clusters. [ 2 ]

  3. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters).

  4. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  5. Clustered standard errors - Wikipedia

    en.wikipedia.org/wiki/Clustered_standard_errors

    While this example is very specific, similar issues arise in a wide variety of settings. For example, in many panel data settings (such as difference-in-differences) clustering often offers a simple and effective way to account for non-independence between periods within each unit (sometimes referred to as "autocorrelation in residuals"). [4]

  6. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  7. Consensus clustering - Wikipedia

    en.wikipedia.org/wiki/Consensus_clustering

    Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms.Also called cluster ensembles [1] or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better ...

  8. Chi-square automatic interaction detection - Wikipedia

    en.wikipedia.org/wiki/Chi-square_automatic...

    In practice, CHAID is often used in the context of direct marketing to select groups of consumers to predict how their responses to some variables affect other variables, although other early applications were in the fields of medical and psychiatric research. [citation needed]

  9. Biclustering - Wikipedia

    en.wikipedia.org/wiki/Biclustering

    Biclustering, block clustering, [1] [2] Co-clustering or two-mode clustering [3] [4] [5] is a data mining technique which allows simultaneous clustering of the rows and columns of a matrix. The term was first introduced by Boris Mirkin [ 6 ] to name a technique introduced many years earlier, [ 6 ] in 1972, by John A. Hartigan .