enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sobolev inequality - Wikipedia

    en.wikipedia.org/wiki/Sobolev_inequality

    In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces.These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the Rellich–Kondrachov theorem showing that under slightly stronger conditions some Sobolev spaces are compactly embedded in others.

  3. Gagliardo–Nirenberg interpolation inequality - Wikipedia

    en.wikipedia.org/wiki/Gagliardo–Nirenberg...

    In mathematics, and in particular in mathematical analysis, the Gagliardo–Nirenberg interpolation inequality is a result in the theory of Sobolev spaces that relates the -norms of different weak derivatives of a function through an interpolation inequality.

  4. Sobolev mapping - Wikipedia

    en.wikipedia.org/wiki/Sobolev_mapping

    In mathematics, a Sobolev mapping is a mapping between manifolds which has smoothness in some sense. Sobolev mappings appear naturally in manifold-constrained problems in the calculus of variations and partial differential equations , including the theory of harmonic maps .

  5. Poincaré inequality - Wikipedia

    en.wikipedia.org/wiki/Poincaré_inequality

    In mathematics, the Poincaré inequality [1] is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition.

  6. Trudinger's theorem - Wikipedia

    en.wikipedia.org/wiki/Trudinger's_theorem

    In mathematical analysis, Trudinger's theorem or the Trudinger inequality (also sometimes called the Moser–Trudinger inequality) is a result of functional analysis on Sobolev spaces. It is named after Neil Trudinger (and Jürgen Moser). It provides an inequality between a certain Sobolev space norm and an Orlicz space norm of a

  7. Hilbert manifold - Wikipedia

    en.wikipedia.org/wiki/Hilbert_manifold

    In mathematics, a Hilbert manifold is a manifold modeled on Hilbert spaces. Thus it is a separable Hausdorff space in which each point has a neighbourhood homeomorphic to an infinite dimensional Hilbert space. The concept of a Hilbert manifold provides a possibility of extending the theory of manifolds to infinite-dimensional setting.

  8. Pólya–Szegő inequality - Wikipedia

    en.wikipedia.org/wiki/Pólya–Szegő_inequality

    In mathematical analysis, the Pólya–Szegő inequality (or Szegő inequality) states that the Sobolev energy of a function in a Sobolev space does not increase under symmetric decreasing rearrangement. [1] The inequality is named after the mathematicians George Pólya and Gábor Szegő.

  9. Gårding's inequality - Wikipedia

    en.wikipedia.org/wiki/Gårding's_inequality

    Be careful, in this application, Garding's Inequality seems useless here as the final result is a direct consequence of Poincaré's Inequality, or Friedrich Inequality. (See talk on the article). As a simple example, consider the Laplace operator Δ. More specifically, suppose that one wishes to solve, for f ∈ L 2 (Ω) the Poisson equation