Search results
Results from the WOW.Com Content Network
For example, 50 g of zinc will react with oxygen to produce 62.24 g of zinc oxide, implying that the zinc has reacted with 12.24 g of oxygen (from the Law of conservation of mass): the equivalent weight of zinc is the mass which will react with eight grams of oxygen, hence 50 g × 8 g/12.24 g = 32.7 g.
An equivalent (symbol: officially equiv; [1] unofficially but often Eq [2]) is the amount of a substance that reacts with (or is equivalent to) an arbitrary amount (typically one mole) of another substance in a given chemical reaction. It is an archaic quantity that was used in chemistry and the biological sciences (see Equivalent weight § In ...
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
When an acid is neutralized the amount of base added to it must be equal to the amount of acid present initially. This amount of base is said to be the equivalent amount. In a titration of an acid with a base, the point of neutralization can also be called the equivalence point.
Normality can be used for acid-base titrations. For example, sulfuric acid (H 2 SO 4) is a diprotic acid. Since only 0.5 mol of H 2 SO 4 are needed to neutralize 1 mol of OH −, the equivalence factor is: f eq (H 2 SO 4) = 0.5. If the concentration of a sulfuric acid solution is c(H 2 SO 4) = 1 mol/L, then its normality is 2 N. It can also be ...
In chemistry and thermodynamics, the enthalpy of neutralization (ΔH n) is the change in enthalpy that occurs when one equivalent of an acid and a base undergo a neutralization reaction to form water and a salt. It is a special case of the enthalpy of reaction. It is defined as the energy released with the formation of 1 mole of water.
"Glacial acetic acid" is a name for water-free acetic acid. Similar to the German name "Eisessig" ("ice vinegar"), the name comes from the solid ice-like crystals that form with agitation, slightly below room temperature at 16.6 °C (61.9 °F). Acetic acid can never be truly water-free in an atmosphere that contains water, so the presence of 0. ...
Conversely, the addition of acid converts weak acid anions to CO 2 and continuous addition of strong acids can cause the alkalinity to become less than zero. [12] For example, the following reactions take place during the addition of acid to a typical seawater solution: B(OH) − 4 + H + → B(OH) 3 + H 2 O OH − + H + → H 2 O PO 3− 4 + 2 ...