enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    using the Hamilton product, where the vector part of the pure quaternion L(p ′) = (0, r x, r y, r z) is the new position vector of the point after the rotation. In a programmatic implementation, the conjugation is achieved by constructing a pure quaternion whose vector part is p, and then performing

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The Rodrigues vector (sometimes called the Gibbs vector, with coordinates called Rodrigues parameters) [3] [4] can be expressed in terms of the axis and angle of the rotation as follows: = ^ ⁡ This representation is a higher-dimensional analog of the gnomonic projection , mapping unit quaternions from a 3-sphere onto the 3-dimensional pure ...

  4. Quaternion - Wikipedia

    en.wikipedia.org/wiki/Quaternion

    Even though every quaternion can be viewed as a vector in a four-dimensional vector space, it is common to refer to the vector part as vectors in three-dimensional space. With this convention, a vector is the same as an element of the vector space R 3 . {\displaystyle \mathbb {R} ^{3}.} [ b ]

  5. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    where q is the versor, q −1 is its inverse, and x is the vector treated as a quaternion with zero scalar part. The quaternion can be related to the rotation vector form of the axis angle rotation by the exponential map over the quaternions, = /, where v is the rotation vector treated as a quaternion.

  6. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    which is a quaternion of unit length (or versor) since ‖ ‖ = + + + = Most importantly, the above equations for composition of rotations are precisely the equations for multiplication of quaternions =. In other words, the group of unit quaternions with multiplication, modulo the negative sign, is isomorphic to the group of rotations with ...

  7. Rodrigues' rotation formula - Wikipedia

    en.wikipedia.org/wiki/Rodrigues'_rotation_formula

    Vector geometry of Rodrigues' rotation formula, as well as the decomposition into parallel and perpendicular components. Let k be a unit vector defining a rotation axis, and let v be any vector to rotate about k by angle θ ( right hand rule , anticlockwise in the figure), producing the rotated vector v rot {\displaystyle \mathbb {v} _{\text ...

  8. Rotor (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotor_(mathematics)

    A rotor is an object in the geometric algebra (also called Clifford algebra) of a vector space that represents a rotation about the origin. [1] The term originated with William Kingdon Clifford, [2] in showing that the quaternion algebra is just a special case of Hermann Grassmann's "theory of extension" (Ausdehnungslehre). [3]

  9. Quaternionic analysis - Wikipedia

    en.wikipedia.org/wiki/Quaternionic_analysis

    Such functions can be called functions of a quaternion variable just as functions of a real variable or a complex variable are called. As with complex and real analysis , it is possible to study the concepts of analyticity , holomorphy , harmonicity and conformality in the context of quaternions.