enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quantum number - Wikipedia

    en.wikipedia.org/wiki/Quantum_number

    A quantum number beginning in n = 3,ℓ = 0, describes an electron in the s orbital of the third electron shell of an atom. In chemistry, this quantum number is very important, since it specifies the shape of an atomic orbital and strongly influences chemical bonds and bond angles. The azimuthal quantum number can also denote the number of ...

  3. Azimuthal quantum number - Wikipedia

    en.wikipedia.org/wiki/Azimuthal_quantum_number

    For a given value of the principal quantum number n, the possible values of ℓ range from 0 to n − 1; therefore, the n = 1 shell only possesses an s subshell and can only take 2 electrons, the n = 2 shell possesses an s and a p subshell and can take 8 electrons overall, the n = 3 shell possesses s, p, and d subshells and has a maximum of 18 ...

  4. Electron shell - Wikipedia

    en.wikipedia.org/wiki/Electron_shell

    For example, the "4s subshell" is a subshell of the fourth (N) shell, with the type (s) described in the first row. The second column is the azimuthal quantum number (ℓ) of the subshell. The precise definition involves quantum mechanics, but it is a number that characterizes the subshell.

  5. Electron configuration - Wikipedia

    en.wikipedia.org/wiki/Electron_configuration

    For example, the 3d subshell has n = 3 and l = 2. The maximum number of electrons that can be placed in a subshell is given by 2(2 l + 1). This gives two electrons in an s subshell, six electrons in a p subshell, ten electrons in a d subshell and fourteen electrons in an f subshell.

  6. Aufbau principle - Wikipedia

    en.wikipedia.org/wiki/Aufbau_principle

    The maximum number of electrons in a subshell is equal to 2(2 l + 1), where the azimuthal quantum number l is equal to 0, 1, 2, and 3 for s, p, d, and f subshells, so that the maximum numbers of electrons are 2, 6, 10, and 14 respectively.

  7. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    The quantum numbers corresponding to these operators are , , (always 1/2 for an electron) and respectively. The energy levels in the hydrogen atom depend only on the principal quantum number n . For a given n , all the states corresponding to ℓ = 0 , … , n − 1 {\displaystyle \ell =0,\ldots ,n-1} have the same energy and are degenerate.

  8. Second quantization - Wikipedia

    en.wikipedia.org/wiki/Second_quantization

    Second quantization, also referred to as occupation number representation, is a formalism used to describe and analyze quantum many-body systems. In quantum field theory, it is known as canonical quantization, in which the fields (typically as the wave functions of matter) are thought of as field operators, in a manner similar to how the physical quantities (position, momentum, etc.) are ...

  9. Magnetic quantum number - Wikipedia

    en.wikipedia.org/wiki/Magnetic_quantum_number

    The spin magnetic quantum number m s specifies the z-axis component of the spin angular momentum for a particle having spin quantum number s. For an electron, s is 1 ⁄ 2 , and m s is either + 1 ⁄ 2 or − 1 ⁄ 2 , often called "spin-up" and "spin-down", or α and β.