enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dixon's factorization method - Wikipedia

    en.wikipedia.org/wiki/Dixon's_factorization_method

    Dixon's method is based on finding a congruence of squares modulo the integer N which is intended to factor. Fermat's factorization method finds such a congruence by selecting random or pseudo-random x values and hoping that the integer x 2 mod N is a perfect square (in the integers):

  3. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  5. Category:Integer factorization algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Integer...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more

  6. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    As far as is known, this is not possible using classical (non-quantum) computers; no classical algorithm is known that can factor integers in polynomial time. However, Shor's algorithm shows that factoring integers is efficient on an ideal quantum computer, so it may be feasible to defeat RSA by constructing a large quantum computer.

  7. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.

  8. Continued fraction factorization - Wikipedia

    en.wikipedia.org/wiki/Continued_fraction...

    In number theory, the continued fraction factorization method (CFRAC) is an integer factorization algorithm. It is a general-purpose algorithm, meaning that it is suitable for factoring any integer n , not depending on special form or properties.

  9. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Polynomial factoring algorithms use basic polynomial operations such as products, divisions, gcd, powers of one polynomial modulo another, etc. A multiplication of two polynomials of degree at most n can be done in O ( n 2 ) operations in F q using "classical" arithmetic, or in O ( n log( n ) log(log( n )) ) operations in F q using "fast ...