Search results
Results from the WOW.Com Content Network
A fixed-point representation of a fractional number is essentially an integer that is to be implicitly multiplied by a fixed scaling factor. For example, the value 1.23 can be stored in a variable as the integer value 1230 with implicit scaling factor of 1/1000 (meaning that the last 3 decimal digits are implicitly assumed to be a decimal fraction), and the value 1 230 000 can be represented ...
In decimal numbers greater than 1 (such as 3.75), the fractional part of the number is expressed by the digits to the right of the decimal (with a value of 0.75 in this case). 3.75 can be written either as an improper fraction, 375/100, or as a mixed number, 3 + 75 / 100 .
A finite regular continued fraction, where is a non-negative integer, is an integer, and is a positive integer, for . A continued fraction is a mathematical expression that can be writen as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple ...
The duodecimal system, also known as base twelve or dozenal, is a positional numeral system using twelve as its base. In duodecimal, the number twelve is denoted "10", meaning 1 twelve and 0 units; in the decimal system, this number is instead written as "12" meaning 1 ten and 2 units, and the string "10" means ten.
Every decimal representation of a rational number can be converted to a fraction by converting it into a sum of the integer, non-repeating, and repeating parts and then converting that sum to a single fraction with a common denominator. For example, to convert. 8.123 {\textstyle \pm 8.123 {\overline {4567}}} to a fraction one notes the lemma:
A simple method to add floating-point numbers is to first represent them with the same exponent. In the example below, the second number is shifted right by 3 digits. We proceed with the usual addition method: The following example is decimal, which simply means the base is 10. 123456.7 = 1.234567 × 10 5.
where c 1 = 1 / a 1 , c 2 = a 1 / a 2 , c 3 = a 2 / a 1 a 3 , and in general c n + 1 = 1 / a n + 1 c n . Second, if none of the partial denominators b i are zero we can use a similar procedure to choose another sequence {d i} to make each partial denominator a 1:
Approximating an irrational number by a fraction π: 22/7 1-digit-denominator Approximating a rational number by a fraction with smaller denominator 399 / 941 3 / 7 1-digit-denominator Approximating a fraction by a fractional decimal number: 5 / 3 1.6667: 4 decimal places: Approximating a fractional decimal number by one with fewer digits 2.1784